数据结构题集-第三章-栈和队列-Ackerman函数

说明

  • 本文参照严蔚敏《数据结构(C语言版)题集》一书中包含的问答题和算法设计题目,提供解答和算法的解决方案。
  • 请读者在自己已经解决了某个题目或进行了充分的思考之后,再参考本解答,以保证复习效果。
  • 由于作者水平所限,本解答中一定存在不少这样或者那样的错误和不足,希望读者们在阅读中多动脑、勤思考,争取发现和纠正这些错误,写出更好的算法来。

3.27 已知Ackerman函数的定义如下

a k m ( m , n ) = { a k m ( m − 1 , a k m ( m , n − 1 ) ) m ≠ 0 , n ≠ 0 a k m ( m − 1 , 1 ) m ≠ 0 , n = 0 n + 1 m = 0 akm(m,n)=\begin{cases} akm(m-1,akm(m,n-1))\quad &m\neq{0},n\neq{0}\\ akm(m-1,1) &m\neq{0},n=0\\ n+1 &m=0 \end{cases} akm(m,n)= akm(m1,akm(m,n1))akm(m1,1)n+1m=0,n=0m=0,n=0m=0
(1)写出递归算法;
(2)写出非递归算法;
(3)根据非递归算法,画出求 a k m ( 2 , 1 ) akm(2,1) akm(2,1)时栈的变化过程。

解:

(1)递归算法如下

int akm(int m,int n){
	int a,g;
	if(m==0) a=n+1;
	else if(n==0) a=akm(m-1,1);
	else{
		g=akm(m,n-1);
		a=akm(m-1,g);
	}
	return a;
}

(2)非递归算法如下

#include<stdio.h>
#define STACK_SIZE 50000
typedef struct{
	int mval;
	int nval;
} ElemType;

typedef struct{
	int top;
} Stack;

ElemType space[STACK_SIZE];

void init_stack(Stack *ps){
	ps->top=0;
}

int stack_empty(Stack s){
	return !s.top;
}

void push(Stack *ps,ElemType e){
	if(ps->top>=STACK_SIZE) return;
	space[ps->top++]=e;
}

void pop(Stack *ps,ElemType *pe){
	if(ps->top<=0) return;
	*pe=space[--ps->top];
}

int get_top(Stack s,ElemType *pe){
	if(s.top<=0) return 0;
	else{
		*pe=space[s.top-1];
		return 1;
	}
}

int akm(int m,int n){
	int a,g;
	if(m==0) a=n+1;
	else if(n==0) a=akm(m-1,1);
	else{
		g=akm(m,n-1);
		a=akm(m-1,g);
	}
	return a;
}

void print_space(Stack s){
	int i;
	for(i=0;i<STACK_SIZE;i++){
		if(i==s.top)
			printf("[");
		printf("{%d,%d}",space[i].mval,space[i].nval);
		if(i==s.top)
			printf("]");
	}
	printf("\n");
}

int akm_nonr(int m,int n){
	Stack s;
	ElemType e,et;
	init_stack(&s);
	e.mval=m;
	e.nval=n;
	push(&s,e);
	do{
		if(!get_top(s,&e)) break;
		while(e.mval){
			if(!get_top(s,&e)) break;
			while(e.nval){
				e.nval--;
				push(&s,e);
			}
			pop(&s,&e);
			e.mval--;
			e.nval=1;
			push(&s,e);
		}
		if(s.top>1){
			pop(&s,&e);
			et.nval=e.nval;
			pop(&s,&e);
			e.mval--;
			e.nval=et.nval+1;
			push(&s,e);
		}
		if(!get_top(s,&et)) break;
	}while(s.top>1||et.mval>0);

	pop(&s,&et);
	//print_space(s);
	return et.nval+1;
}

int main(){
	int m,n;
	m=2,n=1;
	do{
		printf("%d\n",akm(m,n));
		printf("%d\n",akm_nonr(m,n));
		scanf("%d %d",&m,&n);
	}while(m>0&&n>0);
	return 0;
}

这里的非递归算法并没有按照书后的答案走捷径,
严格使用栈的操作,
每当需要改变栈顶元素的值,
都是先出栈,改了以后就入栈。

(3) a k m ( 2 , 1 ) akm(2,1) akm(2,1)时栈的变化过程如下

对栈中元素的操作栈的内容[方括号中间是栈顶元素]
push({2,1})[{2,1}]
push({2,0}){2,1}[{2,0}]
change top value{2,1}[{1,1}]
push({1,0}){2,1}{1,1}[{1,0}]
change top value{2,1}{1,1}[{0,1}]
pop() to e={0,1}{2,1}[{1,1}]
change top value{2,1}[{0,2}]
pop() to e={0,2}[{2,1}]
change top value[{1,3}]
push({1,2}){1,3}[{1,2}]
push({1,1}){1,3}{1,2}[{1,1}]
push({1,0}){1,3}{1,2}{1,1}[{1,0}]
change top value{1,3}{1,2}{1,1}[{0,1}]
pop() to e={0,1}{1,3}{1,2}[{1,1}]
change top value{1,3}{1,2}[{0,2}]
pop() to e={0,2}{1,3}[{1,2}]
change top value{1,3}[{0,3}]
pop() to e={0,3}[{1,3}]
change top value[{0,4}]
pop() to e={0,4}result=4+1=5

注意此题中m和n的选择,
在可以忍受的时间范围内算到m=3和n=10就很不错了,
继续算,对时间和空间的需求是很高的,
算到m=4和n=1时,50000个栈空间可能就不够了,
所以需要更大的内存和处理速度才能得到结果,
虽然此题的运算过程有明显的规律,
但目前还没有找到快速得到结果的公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值