# 算法加密#常见#

1.加密算法之MD5算法

MD5的全称是Message-Digest Algorithm 5，在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明，经MD2、MD3和MD4发展而来。

A=0x01234567
B=0x89abcdef
C=0xfedcba98
D=0x76543210

F(X,Y,Z)=(X&Y)|((~X)&Z)
G(X,Y,Z)=(X&Z)|(Y&(~Z))
H(X,Y,Z)=X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是与,|是或,~是非,^是异或)

FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)

GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)

HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)

II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(b,c,d,a,M9,21,0xeb86d391)

(2的32次方)

MD5的安全性

MD5相对MD4所作的改进：
1.增加了第四轮.
2.每一步均有唯一的加法常数.
3.为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z))
4.第一步加上了上一步的结果,这将引起更快的雪崩效应.
5.改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似.
6.近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应.各轮的位移量互不相同.

2.加密算法之DES算法

☆具有相当高的复杂性，使得破译的开销超过可能获得的利益，同时又要便于理解和掌握；

☆DES密码体制的安全性应该不依赖于算法的保密，其安全性仅以加密密钥的保密为基础；

☆实现经济，运行有效，并且适用于多种完全不同的应用。

1977年1月，美国政府颁布：采纳IBM公司设计的方案作为非机密数据的正式数据加密标准（DES?DataEncryptionStandard）。

DES算法的入口参数有三个：Key、Data、Mode。其中Key为8个字节共64位，是DES算法的工作密钥；Data也为8个字节64位，是要被加密或被解密的数据；Mode为DES的工作方式，有两种：加密或解密。
DES算法是这样工作的：如Mode为加密，则用Key去把数据Data进行加密，生成Data的密码形式（64位）作为DES的输出结果；如Mode为解密，则用Key去把密码形式的数据Data解密，还原为Data的明码形式（64位）作为DES的输出结果。在通信网络的两端，双方约定一致的Key，在通信的源点用Key对核心数据进行DES加密，然后以密码形式在公共通信网（如电话网）中传输到通信网络的终点，数据到达目的地后，用同样的Key对密码数据进行解密，便再现了明码形式的核心数据。这样，便保证了核心数据（如PIN、MAC等）在公共通信网中传输的安全性和可靠性。
通过定期在通信网络的源端和目的端同时改用新的Key，便能更进一步提高数据的保密性，这正是现在金融交易网络的流行做法。
DES算法详述
DES算法把64位的明文输入块变为64位的密文输出块，它所使用的密钥也是64位，整个算法的主流程图如下：

58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位，第50位换到第2位，…，依此类推，最后一位是原来的第7位。L0、R0则是换位输出后的两部分，L0是输出的左32位，R0是右32位，例：设置换前的输入值为D1D2D3……D64，则经过初始置换后的结果为：L0=D58D50…D8；R0=D57D49…D7。
经过16次迭代运算后。得到L16、R16，将此作为输入，进行逆置换，即得到密文输出。逆置换正好是初始置的逆运算，例如，第1位经过初始置换后，处于第40位，而通过逆置换，又将第40位换回到第1位，其逆置换规则如下表所示：
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,5826,33,1,41,9,49,17,57,25,

32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32,1,

16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25,
在f(Ri,Ki)算法描述图中，S1,S2…S8为选择函数，其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2……的功能表：

S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,

现设输入为：D＝D1D2D3D4D5D6

行＝D1D6
然后在S1表中查得对应的数，以4位二进制表示，此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法
从子密钥Ki的生成算法描述图中我们可以看到：初始Key值为64位，但DES算法规定，其中第8、16、……64位是奇偶校验位，不参与DES运算。故Key实际可用位数便只有56位。即：经过缩小选择换位表1的变换后，Key的位数由64位变成了56位，此56位分为C0、D0两部分，各28位，然后分别进行第1次循环左移，得到C1、D1，将C1（28位）、D1（28位）合并得到56位，再经过缩小选择换位2，从而便得到了密钥K0（48位）。依此类推，便可得到K1、K2、……、K15，不过需要注意的是，16次循环左移对应的左移位数要依据下述规则进行：

1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的，区别仅仅在于第一次迭代时用子密钥K15，第二次K14、……，最后一次用K0，算法本身并没有任何变化。

DES的算法是对称的，既可用于加密又可用于解密。下图是它的算法粗框图。其具体运算过程有如下七步。
＜缺：找到补上＞

DES算法具有极高安全性，到目前为止，除了用穷举搜索法对DES算法进行攻击外，还没有发现更有效的办法。而56位长的密钥的穷举空间为256，这意味着如果一台计算机的速度是每一秒种检测一百万个密钥，则它搜索完全部密钥就需要将近2285年的时间，可见，这是难以实现的，当然，随着科学技术的发展，当出现超高速计算机后，我们可考虑把DES密钥的长度再增长一些，以此来达到更高的保密程度。
由上述DES算法介绍我们可以看到：DES算法中只用到64位密钥中的其中56位，而第8、16、24、……64位8个位并未参与DES运算，这一点，向我们提出了一个应用上的要求，即DES的安全性是基于除了8，16，24，……64位外的其余56位的组合变化256才得以保证的。因此，在实际应用中，我们应避开使用第8，16，24，……64位作为有效数据位，而使用其它的56位作为有效数据位，才能保证DES算法安全可靠地发挥作用。如果不了解这一点，把密钥Key的8，16，24，……64位作为有效数据使用，将不能保证DES加密数据的安全性，对运用DES来达到保密作用的系统产生数据被破译的危险，这正是DES算法在应用上的误区，留下了被人攻击、被人破译的极大隐患。

3.加密算法之RSA算法

p,q,r这三个数便是privatekey

m,n这两个数便是publickey

<定理>

a是任意一个正整数,b==a^mmodpq,c==b^rmodpq,

m是任一质数,n是任一整数,则n^m==nmodm
(换另一句话说,如果n和m互质,则n^(m-1)==1modm)

<证明>

(x==ymodzandu==vmodz=>xu==yvmodz),

1.如果a不是p的倍数,也不是q的倍数时,

a^(q-1)==1modq(费马小定理)=>a^(k(p-1)(q-1))==1modq

=>c==a^(k(p-1)(q-1)+1)==amodpq

2.如果a是p的倍数,但不是q的倍数时,

=>a^(k(p-1)(q-1))==1modq
=>c==a^(k(p-1)(q-1)+1)==amodq
=>q|c-a

=>c==a^(k(p-1)(q-1)+1)==0modp
=>p|c-a

3.如果a是q的倍数,但不是p的倍数时,证明同上

4.如果a同时是p和q的倍数时,

=>c==a^(k(p-1)(q-1)+1)==0modpq
=>pq|c-a
=>c==amodpq
Q.E.D.

RSA的安全性依赖于大数分解，但是否等同于大数分解一直未能得到理论上的证明，因为没有证明破解RSA就一定需要作大数分解。假设存在一种无须分解大数的算法，那它肯定可以修改成为大数分解算法。目前，RSA的一些变种算法已被证明等价于大数分解。不管怎样，分解n是最显然的攻击方法。现在，人们已能分解多个十进制位的大素数。因此，模数n必须选大一些，因具体适用情况而定。

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(Blind)，让拥有私钥的实体签署。然后，经过计算就可得到它所想要的信息。实际上，攻击利用的都是同一个弱点，即存在这样一个事实：乘幂保留了输入的乘法结构：

(XM)^d=X^d*M^dmodn

C1=P^e1modn

C2=P^e2modn

r*e1+s*e2=1

(C1^(-1))^(-r)*C2^s=Pmodn

RSA的小指数攻击。有一种提高RSA速度的建议是使公钥e取较小的值，这样会使加密变得易于实现，速度有

RSA算法是第一个能同时用于加密和数字签名的算法，也易于理解和操作。RSA是被研究得最广泛的公钥算法，从提出到现在已近二十年，经历了各种攻击的考验，逐渐为人们接受，普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解，但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何，而且密码学界多数人士倾向于因子分解不是NPC问题。RSA的缺点主要有：A)产生密钥很麻烦，受到素数产生技术的限制，因而难以做到一次一密。B)分组长度太大，为保证安全性，n至少也要600bits以上，使运算代价很高，尤其是速度较慢，较对称密码算法慢几个数量级；且随着大数分解技术的发展，这个长度还在增加，不利于数据格式的标准化。目前，SET(SecureElectronicTransaction)协议中要求CA采用比特长的密钥，其他实体使用比特的密钥。

#### java 常用加密解密算法汇总（一）

2016-10-10 11:17:11

#### 常用加密与解密算法示例代码

2017-08-11 17:26:20

#### 常用的加密解密及编码解码算法

2013-01-04 13:41:17

#### 常见加密算法分类,用途,原理以及比较

2016-11-10 13:23:29

#### 几种常用加密方式简要分析及建议

2016-05-17 09:17:06

#### 几种常见加密算法解析及使用

2016-11-29 17:20:46

#### 几种经典常用加密算法

2015-10-27 11:08:17

#### Java常用加密算法

2016-04-01 09:56:09

#### 常用加密算法笔记

2016-12-23 16:46:26

#### 常见加密算法的分类与比较

2015-06-26 16:32:00