NKOI 2112 糖果

                                                【SCOI2011 Day1】糖果

Time Limit:10000MS  Memory Limit:165536K
Total Submit:384 Accepted:85
Case Time Limit:3000MS

Description

  幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候,lxhgww需要满足小朋友们的K个要求。幼儿园的糖果总是有限的,lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

Input

  输入的第一行是两个整数N,K。
  接下来K行,表示这些点需要满足的关系,每行3个数字,X,A,B。
  如果X=1, 表示第A个小朋友分到的糖果必须和第B个小朋友分到的糖果一样多;
  如果X=2, 表示第A个小朋友分到的糖果必须少于第B个小朋友分到的糖果;
  如果X=3, 表示第A个小朋友分到的糖果必须不少于第B个小朋友分到的糖果;
  如果X=4, 表示第A个小朋友分到的糖果必须多于第B个小朋友分到的糖果;
  如果X=5, 表示第A个小朋友分到的糖果必须不多于第B个小朋友分到的糖果;

Output

  输出一行,表示lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。

Sample Input

5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1

Sample Output

11

Hint

对于30%的数据,保证 N<=100
对于100%的数据,保证 N<=100000
对于所有的数据,保证 K<=100000,1<=X<=5,1<=A, B<=N


此题经过分析也可以看出来是一道差分约束的题,设S[X]为第X个小朋友分到的糖果

情况一:S[A]-S[B]>=0,S[B]-S[A]<=0

情况二:S[A]-S[B]<0

情况三:S[A]-S[B]>=0

情况四:S[A]-S[B]>0

情况五:S[A]-S[B]<=0

但是要注意特判情况2和情况4,即输入的A==B时,直接输出-1(因为不能自己大于或小于自己),否则超时

另外在SPFA中判断是否有正权回路,若有就输出-1

最后将所有dis相加就是答案

不过此题有坑,有几个数据会卡SPFA 所以在增加虚拟节点的时候要从n到1增加路

#include<cstdio>
#include<iostream>
#include<queue>
#define LL long long
#define inf 9999999999999999LL
using namespace std;
LL n,k,cnt;
void _read(LL &d){
	d=0;
	char t=getchar();
	for(d=0;t>='0'&&t<='9';t=getchar())d=(d<<3)+(d<<1)+t-'0';
}
LL next[500005],end[500005],last[500005],len[500005];
LL dis[100005],sum[100005];
bool f[100005],flag;
queue<LL>q;
void fst(LL a,LL b,LL l){
	end[++cnt]=b;
	len[cnt]=l;
	next[cnt]=last[a];
	last[a]=cnt;
}
void spfa(){
	LL i,y,t,x;
    for(i=n;i>=1;i--)dis[i]=-inf;//求最长路所以赋值为无穷小
    q.push(0);
	f[0]=true;
	dis[0]=1;//每个小朋友至少分一个所以控制最少数量为1
    while(!q.empty()){
        x=q.front();
		q.pop();
		f[x]=false;
        t=last[x];
        while(t!=0){
           y=end[t];
           if(dis[x]+len[t]>dis[y]){
                  dis[y]=dis[x]+len[t];
                  if(!f[y]){
                      f[y]=true; 
                      q.push(y);
                      sum[y]++;//sum记录y点参与讨论的次数
                      if(sum[y]==n){
                      	printf("-1");
                      	flag=true;
                      	return ;
                      }
                  }
           } 
           t=next[t];
		}
    }
}
int main(){
	LL i,j,a,b,h,ans=0;
	_read(n);_read(k);
	for(i=n;i>=1;i--)fst(0,i,0);//反向讨论
	for(i=1;i<=k;i++){
		_read(h);
		_read(a);
		_read(b);
		if(h==1){
			fst(a,b,0);
			fst(b,a,0);
		}
		else if(h==2){
			if(a==b){
				puts("-1");
				return 0;
		    }
			fst(a,b,1);
		}
		else if(h==3)
		    fst(b,a,0);
		else if(h==4){
			if(a==b){
				puts("-1");
				return 0;
			}
			fst(b,a,1);
		}
		else fst(a,b,0); 
	}
	spfa();
	if(!flag){
		for(i=1;i<=n;i++)
	        ans+=dis[i];
	    cout<<ans;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值