遗传密码(primitivus.cpp/in/out) 1S/128M
遗传密码可表示成一个自然数的序列A1, A2, …, An。遗传特征是在遗传密码中连续出现的有序数对(l, r),满足l=Ai, r=Ai+1,且l不等于r。
给出n个遗传特征,求一个长度最短的遗传密码,使其包含所有的遗传特征。
输入格式:
第1行:1个整数n,表示遗传特殊的数量
接下来n行,每行2个整数l和r(1 <= l <= 1000, 1 <= r <= 1000),表示一个遗传特征。遗传特征不重复。
输出格式:
第1行:1个整数,表示最短的包含所有遗传特征的遗传密码的长度
输入样例
12
2 3
3 9
9 6
8 5
5 7
7 6
4 5
5 1
1 4
4 2
2 8
8 6
输出样例
15
说明:
以下遗传密码包含所有遗传特征(8, 5, 1, 4, 2, 3, 9, 6, 4, 5, 7, 6, 2, 8, 6)且长度最短。
这题虽然放在第一题但是难度还是挺大的,草草看一眼还以为是dp,最后看了题解居然是图论题
主要方法就是,对于每一对特征连一条有向边,然后我们分析:
假设给定的特征是(1,2),(2,3),(2,4),我们自然希望每一条边都走过,而尽量不走不需要的边——这样可以减少路径长度。但是,在给出的特征中,我们不得不走一条不属于给定特征的边——虚线所示,也就是说,我们分两笔才画出所求的图
因此,我们面临的问题求路径长度尽量短,也可以转化成如何用最少的笔画来画出给定图。现在,已经将原问题转化到图中,得到了一个模型。下面,就在这个模型上,考虑设计算法。
问题转化成上述的模型后,我们不由的联想到了经典的“一笔画”问题。不过在本题中,我们需要求的是“至少”要几笔才能“画”完。
首先,如果一个图是由几个互不相干的部分组成的——这些部分之间没有任何边相连,那么就对这些互不相干的部分逐一求解,然后串起来即可。
下面,先从简单的开始,假设给出的特征如图三所示。显然,图中每个点的入度等于出度,我们可以“一笔画完”:1,2,3,4,5,2,6,1。这也就是我们要求的最短基因段。
稍微变化点,假设有两个点的入度不等于出度,如图四所示。显然,我们仍旧可以用“一笔”画完:1,2,3,4,2,5。
更复杂一点的图,有三个点的入度与出度不等,如图五所示。显然,此时,我们需要用两笔才能画出来。
因为1点没有入度,却有2个出度,必然有两笔会从1点画出,至少需要两笔画。
再复杂一点的呢?四个、五个……回顾先前对简单例子的分析,我们发现如下规律:
1) 所有点的入度等于出度,一笔画
2) 只有一个点的入度比出度大一,一笔画
3) 只有一个点的入度比出度大二,二笔画
难道问题与入度和出度的差值有关?不妨再拿一个略微复杂的实例分析。如图六所示:
我们不禁猜想:所有出度大于入度的点,将出度减去入度,得到的值累加起来就是问题的解。还有一个特殊情况,图三中,所有出度等于入度,值加起来为0,但是需要一笔画。可以证明,推出的结论是正确的
总结一下这道题的基本思路:
1.先将图分成几个独立的部分,每个独立部分之间没有边
2.对每个独立部分求解,求出至少需要几笔才能画出
3.将所求的笔画数加起来,再加上点数N,就是问题的解
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
using namespace std;
const int maxn=1005;
inline void _read(int &x){
char t=getchar();bool sign=true;
while(t<'0'||t>'9')
{if(t=='-')sign=false;t=getchar();}
for(x=0;t>='0'&&t<='9';t=getchar())x=x*10+t-'0';
if(!sign)x=-x;
}
int n,m,ind[maxn],outd[maxn],last[maxn],ans=1,a[maxn];
struct node{
int a,b,Next;
node(int a,int b,int Next):a(a),b(b),Next(Next){}
};
vector<node>s;
void insert(int a,int b){
s.push_back(node(a,b,last[a]));
last[a]=s.size()-1;
}
void dfs(int u){
int i,v=u;
while(last[v]>=0){
i=last[v];
last[v]=s[i].Next;
outd[v]--; ind[s[i].b]--;
ans++; m--;
v=s[i].b;
}
}
bool cmp(int a,int b){return outd[a]-ind[a]>outd[b]-ind[b];}
void Sort(){
for(int u=1;u<=n;u++)
if(last[u]>=0){
memset(a,0,sizeof(a));
int cmt=0;
for(int i=last[u];i>=0;i=s[i].Next)cmt++,a[cmt]=s[i].b;
sort(&a[1],&a[1]+cmt,cmp);
for(int i=last[u],j=1;i>=0;i=s[i].Next,j++)s[i].b=a[j];
}
}
void solve(){
int i;
while(m>0){
bool flag=0;
for(i=1;i<=n;i++)
if(outd[i]>ind[i]){
flag=1;
dfs(i);
break;
}
if(!flag)break;
if(m>0)ans++;
}
while(m>0){
for(i=1;i<=n;i++)
if(outd[i]>0){
dfs(i);
break;
}
if(m>0)ans++;
}
cout<<ans;
}
int main(){
memset(last,-1,sizeof(last));
_read(m);
int x,y,i;
for(i=1;i<=m;i++){
_read(x);_read(y);
n=max(max(x,y),n);
outd[x]++,ind[y]++;
insert(x,y);
}
Sort();
solve();
}