对于每两个相邻岛屿,通过简单的计算,可以得出可以连接这两座岛之间的 所需要的桥的 长度范围,有n-1个这样的范围
然后就相当于用m个点,其中抽出n-1个点去对应n-1个区间。
我的做法是把所有的区间按照右端点从小到大排序,,右端点相同按照左端点从小到大排序,
然后用multiset去存桥的长度,每次lower_bound一下,判断一下
时间复杂度O(nlogn)。
#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
#include<stdio.h>
#include<set>
#include<vector>
#define LL long long int
using namespace std;
struct line
{
LL l,r;
bool operator < (const line tar)
{
if(tar.r > r) return true;
else if(tar.r == r)
{
if(tar.l > l) return true;
return false;
}
else return false;
}
};
int n,m;
const int maxn = 220000;
line arr[maxn];
vector<line> lt;
multiset<LL> st;
void init()
{
lt.clear();
st.clear();
}
int main()
{
while(cin>>n>>m)
{
init();
for(int i = 0;i<n;i++)
{
LL l,r;
scanf("%lld %lld",&l,&r);
arr[i].l = l;
arr[i].r = r;
}
for(int i = 0;i<m;i++)
{
LL tmp;
scanf("%lld",&tmp);
st.insert(tmp);
}
if(m < n-1)
{
printf("NO\n");
continue;
}
sort(arr,arr+n);
for(int i = 1;i<n;i++)
{
line tmp;
tmp.r = arr[i].r - arr[i-1].l;
tmp.l = arr[i].l - arr[i-1].r;
lt.push_back(tmp);
}
sort(lt.begin(),lt.end());
int cnt = 0;
multiset<LL> ::iterator iter;
for(int i = 0;i<lt.size();i++)
{
iter = st.lower_bound(lt[i].l);
if(iter == st.end() || *iter > lt[i].r)
{
break;
}
else
{
st.erase(iter);
cnt ++;
if(cnt == n-1) break;
}
}
if(cnt == n-1) printf("YES\n");
else printf("NO\n");
}
return 0;
}