1001. 害死人不偿命的(3n+1)猜想 (15)

问题描述:

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:

5

代码:

#include<stdio.h>
int main()
{
int n;
int num = 0;;
scanf("%d",&n);
while(n != 1)
{
if(n%2 == 0)
{
n = n/2;
}
else
{
n=(3*n+1)/2;
}
num++;
}
printf("%d",num);

return 0;

}

总结:

这个真没什么总结的

20180414

阅读更多
文章标签: PAT
个人分类: PAT
想对作者说点什么? 我来说一句

1001. 害死人不偿命的(3n+1)猜想

2015年01月19日 346B 下载

没有更多推荐了,返回首页

不良信息举报

1001. 害死人不偿命的(3n+1)猜想 (15)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭