自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 文本分类小结

    分类问题的定义:给定一个数据集,称为训练数据集,每个训练样本都是由属性值或特征值构成的特征向量,而且每个训练样本还有一个类标号属性,可表示为(v1,v2,…vn;c),v表示属性值,c表示类标号。     文本分类是自然语言处理领域的一个重要研究方向,是指计算机将载有信息的一篇文本映射到预先给定的某一类别或某几类别主题的过程。文本分类问题与其他分类问题没有本质上的区别,方法可以归结为根据分类数据的某些特征来进行匹配,当然完全的匹配不太现实,因此必须根据模型选择

2021-04-25 22:26:42 764

原创 机器学习分类问题及常用算法总结

机器学习分类问题及常用算法总结 机器学习学习研究计算机如何模仿人类的学习行为,获取新知识或经验,并重新组织已有的知识结构,提高自身的表现。主要分为: 1、监督学习:数据输入对象会预先分配标签,通过数据训练出模型,然后利用模型进行预测。 2、无监督学习:重点在于分析数据的隐藏结构,发现是否存在可区分的组或集群。 3、半监督学习:利用少量的标记数据和大量的未标记数据进行训练和分类。 基于统计的文本分类算法 1、支持向量机(SVM) 该方法时建立在统计学习理论的基础上的机器学习方法,通过学习算法,SVM可以自动寻

2021-04-12 10:18:39 1617

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除