- 博客(2)
- 收藏
- 关注
原创 文本分类小结
分类问题的定义:给定一个数据集,称为训练数据集,每个训练样本都是由属性值或特征值构成的特征向量,而且每个训练样本还有一个类标号属性,可表示为(v1,v2,…vn;c),v表示属性值,c表示类标号。 文本分类是自然语言处理领域的一个重要研究方向,是指计算机将载有信息的一篇文本映射到预先给定的某一类别或某几类别主题的过程。文本分类问题与其他分类问题没有本质上的区别,方法可以归结为根据分类数据的某些特征来进行匹配,当然完全的匹配不太现实,因此必须根据模型选择
2021-04-25 22:26:42 764
原创 机器学习分类问题及常用算法总结
机器学习分类问题及常用算法总结 机器学习学习研究计算机如何模仿人类的学习行为,获取新知识或经验,并重新组织已有的知识结构,提高自身的表现。主要分为: 1、监督学习:数据输入对象会预先分配标签,通过数据训练出模型,然后利用模型进行预测。 2、无监督学习:重点在于分析数据的隐藏结构,发现是否存在可区分的组或集群。 3、半监督学习:利用少量的标记数据和大量的未标记数据进行训练和分类。 基于统计的文本分类算法 1、支持向量机(SVM) 该方法时建立在统计学习理论的基础上的机器学习方法,通过学习算法,SVM可以自动寻
2021-04-12 10:18:39 1617
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人