- 博客(67)
- 收藏
- 关注
原创 【c++】简易英汉翻译器优化实战:从基础到进阶的核心改进解析
本文对比分析了英汉翻译器V1基础版与V2进阶版的核心差异。V1版本存在信息丢失、特殊表达处理缺失、翻译结果粗糙等问题。V2通过三大改进实现优化:1)引入Token结构体封装多维度信息;2)采用正则表达式重构分词模块,实现精准解析;3)新增智能预处理功能,包括缩写自动展开和专有名词识别。这些改进使翻译器从简单的词汇匹配升级为能处理真实语言场景的实用工具,实现了从"能用"到"好用"的跨越。
2025-09-24 08:00:00
1439
原创 【C++】简易英汉翻译器的实现:从代码到原理详解
本文介绍了一个基于C++实现的简易英汉翻译器,采用基于规则的翻译方法,核心功能包括:从TXT文件加载词典、英文分词处理、"短语优先"翻译策略和简单语序调整。系统使用map容器存储单词和短语映射关系,实现了约300行代码的单文件解决方案。重点剖析了字符串处理、分词算法和词典加载等关键模块的实现细节,特别适合C++初学者学习文件操作和字符串处理技巧。
2025-09-22 08:00:00
550
原创 【c++】汉诺塔游戏实现与递归算法深度解析:从代码到思想
本文以汉诺塔游戏为例,通过C++代码展示递归算法的经典应用。文章首先呈现完整的游戏实现,支持手动操作与自动演示双模式,包含可视化渲染、移动校验等功能。代码采用面向对象设计,通过递归函数solveRecursive()实现自动求解,其核心思想是将问题分解为子问题(移动n-1个圆盘)。全文以代码解析为主线,既展示具体实现,又深入讲解递归原理,帮助读者理解算法思想与编程实践的结合。文中特别标注了AI生成内容提示。
2025-09-07 08:00:00
636
原创 【C++】从迷宫游戏看懂 DFS 与 BFS:原理、实现与应用场景
本文通过C++迷宫游戏实例,深入解析深度优先搜索(DFS)和广度优先搜索(BFS)的算法原理与应用。DFS采用"一条路走到黑"的策略,用于迷宫生成和路径验证;BFS则通过"逐层扩散"的方式,确保找到最短路径。文中详细介绍了两种算法的核心代码实现、特点对比及适用场景:DFS适合迷宫生成和连通性判断,BFS则擅长解决最短路径问题。该实例生动展示了两种经典图遍历算法在实际问题中的应用差异。
2025-09-03 08:00:00
1746
原创 【c++】用 AI 生成高质量俄罗斯方块游戏:从代码解析到运行指南
本文将解析一份由AI生成的C++俄罗斯方块游戏代码。该代码基于Windows控制台实现,包含经典俄罗斯方块的核心功能:7种基础方块、完整交互逻辑(移动、旋转、加速下落)、行消除机制和分数系统。代码结构清晰,分为数据定义、工具函数、方块类和主游戏逻辑四大模块。其中Block类封装了方块的属性和行为,采用"先检测再操作"原则确保游戏逻辑稳定。主函数通过循环实现界面刷新和输入处理,并控制游戏流程。这份代码不仅完整实现了游戏功能,还展示了面向对象编程和游戏开发的基本思路,适合C++初学者学习参考
2025-08-30 08:00:00
877
原创 【c++】从猜数字游戏到二分查找:初学者必理解的高效算法思维
本文以可直接运行的 C++ 猜数字游戏为切入点,先拆解游戏代码结构(结构体封装难度、核心猜数逻辑等),引出 “高效缩小范围” 的关键思想;再系统讲解二分查找算法 —— 包括适用场景(有序数组)、原理(每次砍半范围)、迭代 / 递归双实现,详解边界处理与效率(时间 O (logn)、空间 O (1));最后实战优化游戏,加入基于二分的 AI 自动猜数功能,直观对比高效性。全文兼顾语法实践与算法思维,步骤清晰,适合初学者从实例到理论,吃透二分查找核心逻辑与应用。
2025-08-27 08:00:00
1901
原创 【c++】控制台贪吃蛇实战:AI 生成代码拆解与核心逻辑精讲
本文介绍了一个基于C++的控制台贪吃蛇游戏实现,适合入门进阶学习。项目采用类封装设计,包含游戏初始化、键盘输入处理、碰撞检测和分数计算等核心功能。代码使用Windows平台依赖库(conio.h、windows.h),Linux/macOS需替换为ncurses库。文章详细拆解了游戏主循环、蛇身移动逻辑、食物生成等关键技术点,并提供了完整可运行代码(含详细注释)。该实现通过vector动态管理蛇身,采用枚举提升可读性,演示了C++基础语法和游戏开发核心概念,为后续复杂项目打下基础。
2025-08-27 08:00:00
941
原创 【c++】中文问答系统优化实践:词性过滤与重复检测功能升级——关于我用AI编写了一个聊天机器人……(22)
本文针对中文问答系统的优化提出两项核心改进:词性过滤与重复检测。通过引入词性标注功能,系统能够过滤连词、助词等冗余词性,显著提升分词精度;采用词向量和余弦相似度算法,有效识别语义相似的重复问题,避免知识库冗余。优化后的系统在分词准确性和存储效率上均有明显提升,为中文自然语言处理应用提供了更可靠的解决方案。
2025-08-21 08:00:00
642
原创 【c++】从零构建中文问答系统: NLP 基础实践与详解——关于我用AI编写了一个聊天机器人……(番外2)
本文详细解析了一个基于C++实现的中文问答系统,该系统具备中文分词、相似度匹配、增量学习和上下文管理等核心功能。系统采用模块化设计,包括分词模块(基于前缀树的最大匹配算法)、BM25相似度计算模块、增量学习机制和上下文管理模块等关键技术实现。文章深入剖析了各模块的设计思路与工程实现,包括UTF-8编解码处理、BM25算法优化、对话历史维护等细节,并提供了使用示例和优化建议。该系统既可作为NLP学习案例,也可扩展为实际应用框架,为中文智能问答系统开发提供了完整的实现参考。
2025-08-19 08:00:00
859
1
原创 【c++】从基础到进阶:问答系统的四大关键优化——关于我用AI编写了一个聊天机器人……(21)
本文介绍了一个问答系统的优化过程,从数据结构、用户体验和功能扩展三个方向进行改进。通过用unordered_map替代map存储字典节点,使分词效率提升62%;优化输出格式使答案更易读;提供更友好的错误提示;并实现增量学习功能,允许动态添加问答对而无需重启系统。这些优化显著提升了系统性能、用户体验和可扩展性。文章还提供了完整的C++实现代码,展示了数据结构优化、答案格式化、错误处理等关键实现细节。
2025-08-18 08:00:00
1684
原创 【c++】问答系统的模块化重构与性能优化实践——关于我用AI编写了一个聊天机器人……(20)
本文通过对比两个版本的C++问答系统代码,分析了模块化重构带来的优势。原始版本采用单一类实现所有功能,存在代码耦合度高、维护困难等问题;重构版本将系统拆分为DataLoader、SimilarityCalculator、ContextManager等独立类,每个类专注单一职责。重构后系统具有以下改进:1)代码复用性提高60%以上;2)支持动态调整上下文窗口;3)文件加载成功率提升30%;4)算法替换成本降低80%。实践表明,模块化设计虽增加了初期开发成本,但能显著提升系统的可维护性和扩展性。
2025-08-15 08:00:00
1604
原创 【c++】基于 AI 辅助的 C++ 井字棋游戏实现:从算法到代码全解析
本文介绍了一个基于C++和极小极大算法开发的智能井字棋游戏。项目采用3×3棋盘,通过枚举类型定义游戏状态,实现了棋盘初始化、胜负判断等基础功能。核心部分使用极小极大算法为AI提供最优决策能力,通过递归模拟双方落子并评估得分。文章详细讲解了算法原理、局面评估和回溯机制,同时提供了完整可运行的代码。开发过程中需要注意输入校验、跨平台兼容性等问题。该游戏适合C++初学者学习,后续可扩展难度分级、图形界面等功能,为博弈算法入门提供实践参考。
2025-08-12 20:12:35
946
原创 【c++】 问答系统代码优化详解:从基础实现到工业级健壮性提升——关于我用AI编写了一个聊天机器人……(19)
本文对比分析了C++问答系统两个版本的代码改进,重点探讨了如何提升程序的工业级质量。优化版本在六个关键方面进行了增强:1)完善的异常处理机制,通过错误码枚举和try-catch块提升容错性;2)带重试机制的文件操作,应对临时IO问题;3)健壮的分词器实现,改进资源管理;4)严格的输入验证,防范无效数据;5)稳定的日志系统,确保日志记录可靠性;6)问答引擎的容错设计,支持降级处理。这些改进体现了从"能运行"到"运行得好"的转变过程,为开发工业级C++程序提供了异常处理优
2025-07-31 12:40:13
1012
原创 【c++】问答系统优化:从 TF-IDF 到 BM25 的算法升级与实现改进——关于我用AI编写了一个聊天机器人……(18)
本文对比分析了基于C++实现的中文问答系统中TF-IDF与BM25算法的性能差异。旧版采用TF-IDF算法,存在长文档偏好和高频词干扰问题;新版升级为BM25算法,通过文档长度归一化和词频饱和处理,显著提升了匹配精度(约20%)。BM25还优化了存储结构,减少30%内存占用,提升40%初始化速度。研究表明,合适的检索算法能有效提高问答系统的实用性和准确性,后续可考虑结合词向量或动态参数调整进一步优化。
2025-07-31 08:00:00
1666
原创 【c++】从基础到进阶:一个中文问答机器人的 7 大代码改进实践——关于我用AI编写了一个聊天机器人……(17)
本文介绍了中文问答机器人在NLP领域的7项关键优化:引入5级日志系统区分开发/生产环境;宏定义简化日志调用;增强中间过程可视化;完善日志轮转机制;强化错误处理机制;增加调试模式开关;细化中文处理日志。这些改进显著提升了开发效率(问题定位时间缩短)、代码可维护性和生产环境稳定性,解决了原系统存在的日志混乱、调试困难、异常处理不完善等问题,为中文NLP开发提供了可直接复用的优化方案。
2025-07-30 17:38:33
1047
原创 【c++】从 “勉强能用” 到 “真正好用”:中文问答系统的 200 行关键优化——关于我用AI编写了一个聊天机器人……(16)
本文对比了两段问答系统代码的关键差异:旧版采用简单的双字切割分词,而新版实现了基于词典的智能分词(类似Jieba),显著提升了中文处理精度。新版通过三大改进实现了从"勉强能用"到"实用级"的跨越:(1)内置基础词典和最大匹配算法,正确识别复合词;(2)提供自定义词典和停用词表配置接口,支持领域扩展;(3)完善工程细节,包括UTF-8处理、日志系统和异常容错。这些优化使问答系统能准确理解"机器学习"等专业术语,并通过配置文件适应不同场景,成为真正可落
2025-07-27 14:31:36
563
原创 【c++】从基础到进阶:问答系统代码的全方位优化与重构实践——关于我用AI编写了一个聊天机器人……(15)
本文介绍了问答系统代码的优化升级过程,主要从架构设计、日志管理、中文处理和问答引擎四个方面进行改进。在架构上,从面向过程重构为面向对象,通过类封装实现模块化设计;日志系统新增智能轮转和分类记录功能;中文处理升级至UTF-8编码并优化分词策略;问答引擎引入预计算机制提升效率,增加上下文感知和相似问题推荐功能。这些改进使系统在可维护性、运行效率和用户体验等方面得到显著提升,为自然语言处理应用的代码优化提供了参考范式。
2025-07-26 20:29:33
835
原创 【c++】问答系统代码改进解析:新增日志系统提升可维护性——关于我用AI编写了一个聊天机器人……(14)
本文介绍了一个问答系统代码中新增的日志系统改进。改进主要包括:1) 添加日志记录功能,使用时间戳标记日志条目;2) 实现日志分类和格式化存储;3) 在系统关键节点(启动、数据加载、用户交互等)添加日志记录。这些改进显著提升了系统的可追溯性、调试效率和用户行为分析能力。日志采用结构化存储,便于后续进行问题定位、性能分析和用户行为统计。该改进方案具有通用性,可应用于其他需要长期运行或涉及用户交互的程序中。
2025-07-25 09:42:06
677
原创 【c++】问答系统代码优化解析:增强中文处理能力的关键改进——关于我用AI编写了一个聊天机器人……(13)
本文针对中文自然语言处理的特点,对基础问答系统进行了深度优化。主要改进包括:1)新增中文标点符号识别机制,准确区分中英文标点;2)重构关键词提取函数,实现中英文混合文本处理;3)优化精确匹配逻辑,通过去除标点提升中文匹配准确率。此外还调整了TF-IDF相似度阈值以适配中文特性,并增强了代码健壮性。这些改进使系统能够准确解析中文问题的语义结构,显著提升中文环境下的匹配准确率,实现了从"仅支持英文"到"中英混合处理"的跨越。
2025-07-22 16:42:45
471
原创 【C++】 随机数生成全解析:从理论到实践(万字长文)
本文系统介绍了C++随机数生成技术,主要内容包括:1. 随机数基础理论:分类(真随机数、伪随机数)、质量评估标准(均匀性、独立性等)和应用场景(密码学、模拟实验等)。2. C++随机数库演进:从C风格rand()到C++11现代<random>库,再到C++17/20的改进。3. C++11随机数库详解:三大核心组件(引擎、分布、种子序列)及其使用方法,重点介绍了梅森旋转引擎和多种概率分布。4. 实践指南:种子选择策略、应用案例(蒙特卡洛模拟、游戏开发、密码学等)和常见问题解决方案。5. 最佳实
2025-07-19 19:13:58
894
原创 【c++】提升用户体验:问答系统的交互优化实践——关于我用AI编写了一个聊天机器人……(12)
本文介绍了问答系统的优化改进,重点从用户体验角度提升了交互体验。主要改进包括:1)增强引导系统,增加欢迎信息和详细帮助;2)扩展命令系统,支持help/topics等更多指令;3)优化交互提示,采用更自然的中文表达;4)改进错误处理,提供建设性反馈;5)完善错误提示,明确问题原因。这些改进通过降低学习成本、减少挫败感、增强用户掌控感和提升系统信任度,显著改善了用户体验。文章强调,在AI系统开发中,技术实现固然重要,但自然友好的交互体验才是产品成功的关键。
2025-07-19 15:28:22
1936
原创 关于我用AI编写了一个聊天机器人……(11)
本文介绍了一个基于TF-IDF算法的问答系统实现。系统通过以下步骤工作:首先从训练数据加载问答对并预处理,提取关键词并计算IDF值;然后处理用户输入时先尝试精确匹配,失败则使用TF-IDF算法计算问题相似度,返回最匹配答案。系统采用文本预处理、关键词提取和余弦相似度计算等技术,实现了精确匹配和语义匹配相结合的问答功能。文中还给出了核心代码实现,包括文本预处理函数、关键词提取方法和TF-IDF算法等关键模块,并讨论了系统的改进方向,如增加停用词过滤和改进文本预处理等。
2025-07-18 15:46:24
304
2
原创 关于我用AI编写了一个聊天机器人……(10)
本文介绍了一个基于C++实现的多轮对话聊天机器人系统。该系统具备从文件加载训练数据、精确匹配和关键词匹配等核心功能,支持大小写不敏感处理和多行答案。系统采用模块化设计,包含工具函数、数据结构和主程序流程三部分,通过状态机处理训练数据加载。关键词匹配算法通过统计关键词命中次数选择最佳回答,并设置匹配度阈值提高准确性。运行流程包括数据加载、问题输入、匹配处理(先精确后关键词)和结果输出,支持多轮对话直至用户输入exit退出。系统亮点在于模块化设计、匹配度阈值控制和大小写不敏感处理,能够有效提升对话质量。
2025-07-16 07:00:00
341
原创 关于我用AI编写了一个聊天机器人……(番外1)
1.3.6版本精简了问答系统逻辑,采用map存储问答对(key为问题,value为答案)。程序初始化预定义问答对后进入循环,接收用户输入并在map中查找匹配项,找到则返回对应答案,否则输出默认回答。核心代码展示了一个简单的问答对查询实现,包含基本输入输出和查找功能。该版本仅作测试用,不包含完整数据。
2025-07-15 19:43:30
206
原创 递归实现模拟汉诺塔
用递归算法模拟汉诺塔有三根杆子X,Y,ZX杆上有N个穿孔圆盘 , 盘的尺寸由下到上依次变小要求按下列规则将所有圆盘移至Y杆:每次只能移动一个圆盘大盘不能叠在小盘上面递归思想(为降低题目难度,公开递归思想):将X杆上的n−1个圆盘都移到空闲的Z杆上,并且满足上面的所有条件将X杆上的第n个圆盘移到Y上剩下问题就是将Z杆上的n−1个圆盘移动到Y上了。
2024-08-04 15:58:55
446
原创 2024.甲辰龙年快乐!
祝我的108位粉丝们,以及任何一位看到这篇文章的人们甲辰龙年快乐!~~点个关注,新的一年财源滚滚,粉丝多多!对了,别忘了在评论区留下你的祝福哟!
2024-02-09 21:35:36
540
1
一个基于TF-IDF算法的问答系统,以c++实现 文章链接:https://blog.csdn.net/gfdhy/article/details/149365630
2025-07-18
chatrobot的1.2版本
2023-08-13
帮忙把这个c++代码做一点可视化
2024-02-03
CSDN文章怎么设置关注作者之后才能阅读全文?
2023-08-15
请看一下这个代码的问题出在哪儿了
2023-08-09
pygame怎么下载?
2023-05-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人