总结:这章由雇佣问题引出了概率 分析和随机算法。概率分析一般用于确定一些算法的运行时间。而随机化算法用来强行使算法的输入符合某种概率分布,随机化算法的行为不仅由输入决定,还要由 一个随机数生成器所生成的值来决定。
1、 概率分析
可以利用指示器随机变量来进行概 率分析,获得事件发生的期望值。
引理:给定样本空间 S 和 S 中的事件 A ,令 XA =I{A} ,则 E[XA ]=Pr{A}
2、 随机算法
概率分析是在输入上作了假设,而 在随机算法中,随机发生在算法上,而不是发生在输入分布上,也就是对于同一个输入,由于引入了随机算法,最后的排列也会发生变化。这样做是使得“即使你最 坏的敌人也无法产生最糟的输入数列,因为随机的排列使得输入次序不相关,只有在随机数生成器产生一个不幸运的置换时,随机算法才运行得不好”。
随机排列数组的方法
1 )为数组的每个元素 A[i] 赋一个随机的优先级 P[i] ,然后根据优先级对数组 A 中的元素进行排序。 这 里排序,将花费 O(nlgn) 的时间。
伪代码
引理:假设所有的优先级都是唯一 的,过程 PERMUTE-BY-SORTING 可 以产生输入的均匀随机排列。
2 )原地排列给定的 数列。在 O(n) 时间内完成。
伪代码
引理:过程 RANDOMIZE-IN-PLACE 可以计算出一个均匀随机排列。