双边滤波器的原理及实现

双边滤波器是一种保边去噪的滤波技术,它结合了空间距离和像素差值的权重,既避免了高斯滤波器的边缘模糊,也改善了α-截尾均值滤波器的噪声保留问题。在MATLAB中可以通过特定函数实现,如`bfilter2`。本文提供了相关参考资料和实现代码。
摘要由CSDN通过智能技术生成
               

双边滤波器是什么?

双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器),后文中将结合公式做详细介绍。


双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,


权重系数w(i,j,k,l)取决于定义域核


和值域核

的乘积


同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。


=======================================================================

双边滤波器的实现(MATLAB):function B = bfilter2(A,w,sigma)

CopyRight:

% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman


具体请见function B = bfltGray(A,w,sigma_d,sigma_r)函数说明。


%简单地说:%A为给定图像,归一化到[0,1]的矩阵%W为双边滤波器(核)的边长/2%定义域方差σd记为SIGMA(1),值域方差σr记为SIGMA(2)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pre-process input and select appropriate filter.function B = bfilter2(A,w,sigma)% Verify that the input image exists and is valid.if ~exist('A','var') || isempty(A)   error('Input image A is undefined or invalid.');endif ~isfloat(A) || ~sum([1,3] =&#
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值