- 博客(5)
- 收藏
- 关注
原创 动手学深度学习第三章--softmax回归——笔记
如果X是一个形状为(2, 3)的张量,我们对列进行求和, 则结果将是一个具有形状(3,)的向量。当调用sum运算符时,我们可以指定保持在原始张量的轴数,而不折叠求和的维度。这将产生一个具有形状(1, 3)的二维张量。keepdim=True 表示保持原有的维度信息(不压缩维度)注意以下的代码是对行求和,是因为小批量数据中每个样本是一行。X_exp = torch.exp(X):对输入张量的每个元素计算指数值,防止出现负数概率。
2025-10-12 15:48:38
1723
原创 动手学深度学习第三章--线性回归——笔记
除以batch_size是因为损失函数通常是批次中所有样本损失的平均值,是为了让学习率不受批次大小影响。with torch.no_grad()::创建一个上下文环境,在该环境中不会追踪梯度计算,节省内存并加速计算。param.grad.zero_(),每次参数更新后必须清零梯度,否则 PyTorch 会默认累积梯度。
2025-10-12 15:28:02
1637
原创 动手学深度学习笔记——数据预处理部分
原有的 "Alley" 列被转换为两个新列:"Alley_Pave" 和 "Alley_nan"。这种编码方式可以将类别型数据转换为机器学习算法能够处理的数值型数据,同时保留了缺失值的信息。os.path.join('..', 'data') 拼接路径,生成 "../data",data文件生成在当前目录的上一级目录下,如图所示。写入的内容是一个包含三列信息的 CSV 格式数据,同时包含一些缺省值(NA)。接下来,将数据转化为张量形式。,注意的是Alley的值是非数值,所以不会有计算mean方法。
2025-10-04 16:09:55
189
原创 Transform的使用方法总结(小土堆)
创建一个ToTensor实例trans_totensor,因为call函数里的参数是PIL或者np类型,所以传入PIL类型的img,获得tensor类型的img_tensor,将转变成tensor类型后的图片在tensorboard中展示出来。下面以Transform中的ToTensor为例,首先,ToTensor方法的输入要求是PIL图片或者是np类型,输出是tensor类型。一:首先要关注方法的输入输出类型,例如下图中,ToTensor方法的输入要求是PIL图片或者是np类型,输出是tensor类型。
2025-07-31 21:42:11
609
原创 学习pytorch笔记
一:查看自己显卡的型号:打开设备管理器——显示适配器,可以看到自己电脑是否带显卡。这里注意的是显卡不等于GPU,只是说GPU是显卡的重要组成部分。因为我的显卡支持的CUDA的最高版本是12.9,所以这里我可以选择compute platform栏中的前三个选项。二:在anaconda prompt中创建新的虚拟环境,这里我之前已经创建过了叫phoenix的环境,代码如下。三:安装pytorch时,要看自己的显卡支持的CUDA的最高版本是什么。这里可以看出我的显卡支持的CUDA的最高版本是12.9。
2025-07-29 15:15:33
234
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅