- 博客(6)
- 收藏
- 关注
原创 Hadoop 核心技术实战:3 节点集群搭建 + Java API 文件读写 + 排障全指南
作为大数据 X 班的学生,这学期《Hadoop 核心技术》课程让我从 “理论认知” 走向 “实战落地”,以下是我在课程中从集群搭建到代码实操的完整学习收获~
2025-12-23 15:52:52
160
原创 数据可视化学习之旅:从理论到实践的探索
通过这门《数据可视化》课程的学习,我从最初对数据可视化的一知半解,到现在能运用一些工具进行简单的实践,收获满满。数据可视化就像一座桥梁,连接着冰冷的数据和人们的理解。未来,我希望能继续深入学习数据可视化,掌握更多高级的工具和技巧,做出更优秀的可视化作品,让数据更好地为我们服务。
2025-10-16 15:41:24
381
原创 基于 Python 数据可视化的脱发影响因素分析
通过可视化分析,我们清晰呈现了脱发标记分布、年龄关联、疾病影响及生活习惯等因素的作用。结合机器学习(如逻辑回归、随机森林 ),量化因素对脱发的影响权重;引入更多维度数据(如饮食、压力指数 ),深化脱发成因研究;针对高发关联疾病,联动医疗数据开展深入临床分析。
2025-06-26 15:50:44
1086
原创 心脏病数据分析及分类实践:洞察心血管健康密码
采用[具体数据集名称,如 UCI 心脏病数据集],涵盖年龄、性别、胸痛类型、血压、胆固醇等数十项特征,目标变量为是否患心脏病(二元分类),数据经预处理(缺失值填充、异常值处理等),保障分析可靠性。选取国际通用心脏病数据集,包含患者基本信息(年龄、性别 )、生理指标(静息血压、血清胆固醇等 )及心脏相关检查数据(心电图结果、最大心率等 )。但数据维度有限(缺乏长期生活习惯等数据 ),后续可拓展数据、融合深度学习,提升分析深度与分类精度,助力更精准心血管健康管理。对比性别与患病比例,男性患病占比略高。
2025-06-19 16:11:00
1010
原创 订单数据分析与聚类
以前看订单表,只觉得是“销售额”“下单时间”“用户ID”的堆砌,但用pandas清洗数据时,突然发现了隐藏剧情:比如通过 df['订单金额'].describe() 算出的均值和中位数差异,能看出高净值订单对整体的影响;聚类简直是数据界的“连连看”!学到DBSCAN 密度聚类时对着 min 参数设置犯了难老师需要结合业务经验调参,比如订单数据稀疏的可能需要更大eps值让,数据分析不是死,而是理解为什么做——像的 # 此处填写特征选择代码`,其实是提醒我:想清楚订单特征聚类”,金额、时间间隔,还是商品类别?
2025-06-12 16:19:57
419
原创 我究竟在python干了什么
在摸索 Python 基础的过程中,我体验到了收获知识的巨大喜悦。同时,也让我学会运用周围的资源,例如市面上的各大软件、同同学一起讨论、学习老师面对问题的思路、在线教程、论坛讨论等,来帮助自己解决问题,这不仅拓宽了我的学习渠道,还让我结识了许多志同道合的朋友,我们在交流中相互启发、共同进步。面对复杂的算法和数据结构,令人常常头疼,那满屏的报错信息也曾让我心生沮丧,面向对象编程中的类与对象、继承与多态等特性,犹如一团团迷雾,需要我花费大量的时间与精力去剖析,面对它们只能逐行检查、耐心调试。
2024-12-20 09:38:55
327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅