转载于:https://www.cnblogs.com/cxxjohnson/p/8909578.html
spark基本架构
spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架。
spark提供了一个全面、统一的框架用于管理各种不同性质(文本、图片)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求。
spark可以将Hadoop集群中的应用在内存中的运行速度提升很多。
spark架构与生态
spark架构示意图:
Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
spark架构的组成图:
Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Driver: 运行Application 的main()函数
Executor:执行器,是为某个Application运行在worker node上的一个进程
spark和hadoop
Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富。
spark运行流程与特点
运行流程
- 构建spark application的运行环境,启动sparkcontext
- sparkcontext向资源管理器(Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend
- Executor向SparkContext申请Task
- SparkContext将应用程序分发给Executor
- SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行
- Task在Executor上运行,运行完释放所有资源
运行特点
每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
Task采用了数据本地性和推测执行的优化机制
spark运行模式
Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。
对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及hadoop YARN模式
本地模式:常用于本地开发测试,本地还分别 local 和 local cluster
standalone: 独立集群运行模式
Standalone模式使用Spark自带的资源调度框架
采用Master/Slaves的典型架构,选用ZooKeeper来实现Master的HA
框架结构图如下:
模式主要的节点有Client节点、Master节点和Worker节点。其中Driver既可以运行在Master节点上中,也可以运行在本地Client端。当用spark-shell交互式工具提交Spark的Job时,Driver在Master节点上运行;当使用spark-submit工具提交Job或者在Eclips、IDEA等开发平台上使用”new SparkConf.setManager(“spark://master:7077”)”方式运行Spark任务时,Driver是运行在本地Client端上的。
yarn
Spark on YARN模式根据Driver在集群中的位置分为两种模式:一种是YARN-Client模式,另一种是YARN-Cluster(或称为YARN-Standalone模式)
Yarn-Client模式中,Driver在客户端本地运行,这种模式可以使得Spark Application和客户端进行交互,因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是http://hadoop1:4040访问,而YARN通过http:// hadoop1:8088访问
RDD运行流程
DD在Spark中运行大概分为以下三步:
- 创建RDD对象
- DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG
- 每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销