剑指offer面试题24:二叉搜索树的后续遍历序列 Java实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/gg543012991/article/details/52504203
题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后续遍历的结果。如果是则返回true,否则返回false。假设输入的数组的任意两个数字都互不相同
例如:输入数组{5,7,6,9,11,10,8},则经判断是二叉搜索树,返回true;如果输入数组{7,4,6,5},则经判断不是二叉搜索树,返回false。
                  8  
                /   \  
               6    10  
              / \   /  \  
             5   7  9  11       
二叉搜索树定义:一个二叉树,它的每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。

算法分析(以下摘自剑指Offer原书):
在后续遍历得到的序列中,最后一个数字是树的根节点的值。数组中前面的数字可以分成两部分:第一部分是左子树节点的值,他们都比根节点的值小;第二部分是右子树节点的值,它们都比根节点的值大。以数组{5,7,6,9,11,10,8}为例,后续遍历结构的最后一个数字8就是根节点的值。在这个数组中,前3个数字5、7和6都比8小,是值为8的节点的左子树节点;后3个数字9、11、10都比8大,是值为8的节点的右子树节点。
接下来我们用同样的方法确定与数组每一部分对应的子树结构。这其实就是一个递归的过程。对于序列5,7,6,最后一个数字6是左子树的根节点的值。数字5比6小,是值为6的节点的左子节点,而7则是右子节点。同样,在序列9、11、10中,最后一个数字10是右子树的根节点,数字9比10小,是值为10的节点的左子节点,而11则是它的右子节点。
我们再来分析另一个整数数组{7,4,6,5}。后续遍历的最后一个数是根节点,因此根节点值是5.由于第一个数字7大于5,因此在对应的二叉搜索树中,根节点上是没有左子树的,数字7,4,6都是右子树节点的值。但在右子树中有一个节点的值是4,比根节点5的值小,这违背了二叉搜索树的定义,因此不存在一个二叉搜索树与该数组对应。


源程序:

/**************************************************************      
* Copyright (c) 2016, 
* All rights reserved.                   
* 版 本 号:v1.0                   
* 题目描述:二叉搜索树的后序遍历序列
* 			二叉搜索树定义:一个二叉树,它的每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。
* 		       题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后续遍历的结果。如果是则返回true,否则返回false。
* 		       假设输入的数组的任意两个数字都互不相同
* 			例如:输入数组{5,7,6,9,11,10,8},则经判断是二叉搜索树,返回true;如果输入数组{7,4,6,5},则经判断
* 			不是二叉搜索树,返回false。
*		         8   
*		       /   \   
*		      6    10   
*		     / \   / \   
*		    5   7  9  11       
*		    
* 输入描述:请输入一个数组:5 7 6 9 11 10 8
* 程序输出: 这是一个二叉树
* 问题分析: 
* 算法描述: 每次打印一个节点的时候,如果该节点有子节点,则把该节点的子节点放到一个队列的末尾。接下来到队列的头部
* 			取出最早进入队列的节点,重复前面的打印操作,直到队列中所有的节点都被打印出来为止。
* 			
* 完成日期:2016-09-11
***************************************************************/

package org.marsguo.offerproject24;

import java.util.Scanner;

class BinaryTree{
	public boolean IsBinarySearchTree(int[] sequence,int length){
		if(sequence == null || length < 0){
			return false;
		}
		int root = sequence[length - 1];
		//在二叉搜索树中左子树的节点小于根节点
		int i = 0;
		for(;i < length -1; ++i){
			if(sequence[i] > root)				//循环直到找到大于根节点的值,即找到右子树后退出循环
				break;
		}
		//在二叉搜索树中右子树的节点大于根节点
		int j = i;								//i是上一个for循环后的值,此时代表了树中右子树所在位置
		for(;j < length - 1; ++j){
			if(sequence[j] < root)
				return false;					//如果右子树中有比根节点值小的,则不是二叉搜索树,返回false
		}
		//判断左子树是不是二叉搜索树
		boolean left = true;
		if(i > 0){
			left = IsBinarySearchTree(sequence, i);
		}
		//判断右子树是不是二叉搜索树
		boolean right = true;
		if(i < length - 1){
			right = IsBinarySearchTree(sequence, length - i - 1);
		}
		/*if(left && right){
			System.out.println("这是一个二叉搜索树");
		}*/
		return (left && right);
	}
}

public class BinarySearchTree {
	@SuppressWarnings("resource")
	public static void main(String[] args){
		Scanner scanner = new Scanner(System.in);
		System.out.println("请输入一个数组:");
		String str = scanner.nextLine();
		String[] temp = str.split(" ");
		int[] array = new int[temp.length];
		for(int i = 0; i < temp.length; i++){
			array[i] = Integer.parseInt(temp[i]);
		}
			
		BinaryTree binarytree = new BinaryTree();
		if(binarytree.IsBinarySearchTree(array, array.length)){
			System.out.println("这是一个二叉搜索树!");
		}else{
			System.out.println("这不是一个二叉搜索树!");
		}
	}
}



程序运行结果:

阅读更多

没有更多推荐了,返回首页