31、法律声明与用户协议详解

法律声明与用户协议详解

1. 版权和知识产权声明

在当今数字化时代,保护知识产权变得尤为重要。本文档详细介绍了苹果公司在其文档和内容方面的版权和知识产权声明。苹果公司明确声明,本文档及其包含的信息受苹果公司版权所有,并保留所有权利。未经授权,任何个人或组织不得以任何形式复制或使用文档内容。这一声明旨在确保苹果公司的知识产权得到有效保护,防止未经授权的使用和传播。

1.1 版权声明

文档的版权归属苹果公司,所有权利均受到法律保护。未经授权的复制、分发或使用文档内容将被视为侵犯版权的行为。文档的任何部分,包括但不限于文字、图表、代码和数据,均不得以任何形式或任何手段进行复制或传播,除非获得苹果公司的书面许可。

1.2 知识产权保护

苹果公司不仅拥有文档的版权,还拥有与其相关的所有知识产权。这些知识产权包括但不限于商标、专利、商业秘密和技术资料。未经授权使用这些知识产权将构成侵权行为,可能导致法律责任。

2. 许可协议

为了确保文档的合法使用,苹果公司制定了严格的许可协议。根据该协议,文档的使用受到苹果公司与接收方之间的条款约束。只有在双方达成一致并签署许可协议后,接收方才可使用文档。如果接收方不同意协议条款,则不得使用文档。

2.1 协议条款

许可协议的条款明确规定了文档的使用范围和限制。接收方必须严格遵守协议条款,不得超出协议规定的范围使用文档。此外,协议还规定了文档的使用期限、更新频率和终止条件等重要事项。

2.2 接收方责任

接收方在使用文档时,必须承担相应的责任。这包括但不限于确保文档内容的正确使用

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值