数值计算中的优化与基础数学方法
1. 优化问题概述
在工程和数学领域,优化问题是常见的挑战。例如,在结构设计中,需要在满足一定约束条件下,最小化结构的体积。考虑一个对称桁架,设弹性模量为 $E$,第 $i$ 个构件的横截面积为 $A_i$,加载节点的位移分量为 $u$ 和 $v$,且 $A_1 = A_3$。目标是在不违反 $u \leq \delta$ 和 $v \leq \delta$ 的约束条件下,确定横截面积以最小化结构体积。提示是像示例 10.5 那样对问题进行无量纲化处理。
若三个横截面积相互独立,也需要求解该优化问题。另外,从圆柱形原木中切割出矩形横截面的梁,要计算使横截面惯性矩 $I = \frac{bh^3}{12}$ 最大的高度 $h$ 和宽度 $b$,并通过微积分进行验证。
1.1 优化方法
- 模拟退火法 :对于涉及多个设计变量的复杂问题,模拟退火法已被成功应用。该方法基于与退火过程的类比,即缓慢冷却的液态金属凝固成晶体状的最低能量结构。模拟退火法的一个显著特点是它能够在寻找全局最小值的过程中跨越局部最小值。
- 单纯形法 :线性规划中的单纯形法在某些情况下也有应用。线性规划处理的优化问题中,目标函数和约束条件是自变量的线性表达式。一般的线性规划问题是在满足一系列约束条件下,最小化目标函数 $F = \sum_{i=1}^{n} a_ix_i$。然而,由于很少有工程应用可以表述为线性规划问题,且单纯形法的可靠实现会导致相当复杂的算法,所以这里暂不详细介绍。但需要注意的是,单纯形法在非线性优化中并非毫无用处,例如,具有非线性约束的
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



