论文笔记
文章平均质量分 89
GGG_Yu
这个作者很懒,什么都没留下…
展开
-
几种流行的神经网络形式化验证器的比较
截止到2021年8月,国际上最优秀的几种神经网络形式化验证器:工具名称适用网络特点优点缺陷文献名称及出版时间Venus基于ReLU的前馈神经网络- 基于MILP求解器- 支持生成反例利用ReLU节点之间依赖关系,修剪基于MILP公式的验证问题的搜索树,大大缩短的验证过程的时间只能应用于ReLU激活函数的神经网络Efficient Verification of ReLU-based Neural Networks via Dependency Analysis, 20原创 2021-09-18 20:33:04 · 1202 阅读 · 0 评论 -
通过依赖分析的基于ReLU神经网络的有效验证(Efficient Verification of ReLU-based Neural Networks via Dependency Analysis)
作者:Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, Ruth Misener单位:英国伦敦帝国理工学院计算机系目录摘要背景知识符号含义验证问题MILP表达方法依赖性分析依赖关系的定义层内依赖连续层依赖和层间依赖Venus验证工具验证过程输入域分割Venus的体系结构实验结果与评估摘要 本文引入了一种高效的方法来验证基于ReLU的前馈神经网络。我们推导了一种利用ReLU节点之间的依赖关系的自动程序,从而修剪了原创 2021-09-18 20:24:32 · 881 阅读 · 0 评论 -
深度神经网络的特征引导黑盒安全测试(Feature-Guided Black-Box Safety Testing of Deep Neural Networks)
作者:Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska单位:佐治亚大学,利物浦大学,牛津大学目录摘要预备知识基于人类感知的操作安全性蒙特卡罗树搜索渐近最优策略实验结果总结摘要 大多数现有的生成对抗样本的方法都需要一些自己使用的神经网络知识(结构、参数等)。本文以图像分类器为研究对象,提出了一种特征引导的黑盒方法,可以在不需要这种知识的情况下来验证深度神经网络的安全性。我们将生成对抗样本的过程公式化为一个两人轮流随机游戏,其中第一个玩家的目标是原创 2021-06-18 20:42:21 · 859 阅读 · 0 评论 -
深度神经网络的安全性验证(Safety Verification of Deep Neural Networks)
作者:Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu单位:牛津大学计算机科学系目录摘要主要贡献预备知识分类决策的安全性分析安全性和鲁棒性操作有界变化验证框架逐层分析验证方法特征分解和发现区域和操作的选择映射回输入层实验结果比较总结摘要 深度神经网络在图像分类方面取得了令人印象深刻的实验结果,但它在对抗扰动方面是不稳定的,也就是说,对输入图像的极小改变也会导致网络对其进行错误分类。随着自动驾驶汽车的应用,包括感知模块和端到端控制器,这都引起原创 2021-06-18 20:05:03 · 1959 阅读 · 0 评论 -
人工神经网络的最大弹性(Maximum Resilience of Artificial Neural Networks)
文章目录人工神经网络的最大弹性摘要背景知识人工神经网络的算术编码扰动界限启发式问题编码实现和评估总结人工神经网络的最大弹性作者:Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess单位:慕尼黑工业大学文献来源:Cheng, C.-H., Nuhrenberg, G., and Ruess, H. Maximum resilience of artificial neural networks. In International Symposium o原创 2021-03-23 19:05:23 · 535 阅读 · 0 评论 -
Reluplex:一种用于验证深度神经网络的高效的SMT求解器
Reluplex:一种用于验证深度神经网络的高效的SMT求解器摘要背景介绍背景知识从Simplex到Reluplex高效实现Reluplex案例研究:ACAS Xu系统评估过程总结和未来工作文献来源:Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An efficient SMT solver for verifying deep neural networks. In原创 2021-03-09 18:41:10 · 2805 阅读 · 8 评论 -
AI²:用抽象解释证明神经网络的安全性和鲁棒性
AI²:用抽象解释证明神经网络的安全性和鲁棒性摘要论文的几个背景知识点如何用抽象解释过度逼近条件仿射函数AI²的实现AI²的评估不同抽象域的精度和Reluplex的比较利用AI²比较三种防御技术的有效性总结和未来工作展望文献来源:Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri∗, and Martin Vechev. AI²: Safety and Robustness Certificat原创 2021-03-02 19:30:42 · 2225 阅读 · 0 评论 -
人工智能系统的形式化验证技术研究进展与趋势
人工智能系统的形式化验证技术研究进展与趋势国际研究现状 这是《2019-2020中国计算机科学技术发展报告》中的一篇报告,主要从形式化方法的角度观察过去三年内(主要从2017年起)基于形式化方法的人工智能原创 2021-02-02 20:05:52 · 5293 阅读 · 40 评论