爬楼梯问题

题目:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

思想:对于爬楼梯问题而言,如果:

  • 第一节楼梯f(1),只有一种方法

  • 第二节楼梯f(2),只有两种方法

  • 更高阶楼梯f(n)

    • 只有从n-1上爬一阶(这是第一种方案),方案数一共为f(n-1)

    • 或者从n-2上爬两阶(这是第二种方案),方案数一共为f(n-2)

      • 总的方案数f(n) = 第一种方案数 f(n-1)+ 第二种方案数f(n-2)


总结:利用斐波那契数列解决该问题即可

数列的定义可以表示为:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2),其中 n 表示数列的索引


代码:

class Solution {
    public int climbStairs(int n) {
        if(n < 2){
            return n;
        }
        int[] res = new int[n];
        //爬一节楼梯只有一种方法
        res[0] = 1;
        //爬两阶楼梯有两种方法
        res[1] = 2;
        //之后的每阶楼梯总的方案数f(n) = 第一种方案数 f(n-1)+ 第二种方案数f(n-2)
        for(int i = 2; i < n; i++){
            res[i] = res[i - 1] + res[i - 2];
        }
        return res[n - 1];
    }
}

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值