题目:假设你正在爬楼梯。需要 n
阶你才能到达楼顶。每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
思想:对于爬楼梯问题而言,如果:
-
第一节楼梯
f(1)
,只有一种方法 -
第二节楼梯
f(2)
,只有两种方法 -
更高阶楼梯
f(n)
,-
只有从
n-1
上爬一阶(这是第一种方案),方案数一共为f(n-1)
-
或者从
n-2
上爬两阶(这是第二种方案),方案数一共为f(n-2)
-
总的方案数
f(n)
= 第一种方案数f(n-1)
+ 第二种方案数f(n-2)
-
-
总结:利用斐波那契数列解决该问题即可
数列的定义可以表示为:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2),其中 n 表示数列的索引
代码:
class Solution {
public int climbStairs(int n) {
if(n < 2){
return n;
}
int[] res = new int[n];
//爬一节楼梯只有一种方法
res[0] = 1;
//爬两阶楼梯有两种方法
res[1] = 2;
//之后的每阶楼梯总的方案数f(n) = 第一种方案数 f(n-1)+ 第二种方案数f(n-2)
for(int i = 2; i < n; i++){
res[i] = res[i - 1] + res[i - 2];
}
return res[n - 1];
}
}