曲率及其计算公式

M,M'是曲线上的两点,假如曲线在点M,M'的切线与x轴的交角分别是\alpha ,\Delta \alpha,那么,当点M沿曲线变到点M'时,角度改变了\Delta \alpha,而改变这个角度所经历的路程则是弧长\Delta s=\widehat{MM'}

定义比值\left | \frac{\Delta \alpha }{\Delta s} \right |为弧段\widehat{MM'}上的平均曲率,称极限值k=\left | \frac{d\alpha }{ds} \right |=\lim_{ \Delta s\rightarrow0}\left | \frac{\Delta \alpha }{\Delta s} \right |为曲线在点M处的曲率。

设曲线的方程为y=f(x),且具有二阶导数,因为tan\alpha=y',故\alpha =arctany'

d\alpha =\frac{y''}{1+y'^{2}}dx

ds=\sqrt{1+y'^{2}}dx

k=\left |\frac{d\alpha }{ds} \right |=\frac{\left | y'' \right |}{(1+y'^{2})^{1.5}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值