神经网络
文章平均质量分 52
沉睡中的主角
忆昔穷苍茫
清心浴乾坤
展开
-
损失函数和反向传播
L1LOSS原创 2021-08-05 19:44:59 · 1215 阅读 · 0 评论 -
神经网络搭建+sequential
搭建神经网络+sequential(联邦学习笔记)sequential:顺序容器。模块将按照它们在构造函数中传递的顺序添加到它当中。或者,可以传入模块的OrderedDict。Sequential的forward()方法接受任何输入并将其转发到它包含的第一个模块。然后,它将每个后续模块的输出顺序链接为输入,最后返回最后一个模块的输出。(能简化代码)下面以CIFR10的卷积神经网络搭建模型。1、有三个卷积层,卷积核均为5x52、最大池化层有三个,内核为2x23、数据经过 卷积层原创 2021-08-05 16:50:04 · 947 阅读 · 0 评论 -
神经网络-非线性激活ReLU
ReLU 函数线性整流函数(Rectified Linear Unit,ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。激活函数有两个参数(input,inplace)import torchimport torchvisionfrom torch import nnfrom torch.nn import ReLU, Sigmoidfrom torch.utils.d..原创 2021-08-04 20:49:17 · 713 阅读 · 0 评论 -
神经网络最大池化层
最大池化层(常用的是maxpool2d)的作用:一是对卷积层所提取的信息做更一步降维,减少计算量 二是加强图像特征的不变性,使之增加图像的偏移、旋转等方面的鲁棒性具体操纵:取图像中的最大值作为输出,如下所示,第一个橙色框代表最大池化操作,最左边池化的最大值为3,即第一个输出为3,后面以此类推。橙色的操作代表ceil_mode=True()时的操作,即不够的向上取整,False代表向下取整。代码:import torchfrom torch import nnfrom torc.原创 2021-08-04 20:08:30 · 6848 阅读 · 1 评论 -
神经网络-卷积层
在上一篇,输入图像经过一个卷积核,得到一个输出。这是我们设置卷积层参数in_channel=1,out_channel=1时(默认)的结果。当我们设置in_channel=1,out_channel=2时,卷积核就回有两个,卷积后的输出也有两个先简单编写一个神经网络,如下:import torchimport torchvisionfrom torch import nnfrom torch.nn import Conv2dfrom torch.utils.data import .原创 2021-08-04 18:56:09 · 294 阅读 · 0 评论 -
Torch.nn
1、简单使用nn模型简单使用nn模型,自定义一个模型,简单处理时输入数据+1作为输出import torchfrom torch import nnclass module(nn.Module): def __init__(self): super().__init__() def forward(self,input): output = input + 1 return outputmod = module()x原创 2021-08-04 18:02:22 · 183 阅读 · 0 评论