LAB1(共三题)
【1】
解题思路:
首先,题目大意是求出每个Fibonacci数,并用得到的Fibonacci数用(1E+9)+7来区模,并将其输出换行。(输入的N为Fibonacci下标).
需要注意的点是要注意在求Fibonacci数的时候可能会产生溢出(即使使用long long 类型存储,在N等于99时也会溢出),故我采用的方法是每次计算Fibonacci数时同时取模,则因为输入的N要小于100,故不会溢出。
相关代码如下(0sec AC):
#include <stdio.h>
#include <string.h>
#define mod 1000000007
int main(void)
{
int n;// The number of test cases
int fib[110];
while(scanf("%d",&n)!=EOF&&(n>0)){
int i;
fib[0]=0;
fib[1]=1;
if(n>1){
for(i=2;i<=n;i++){
fib[i]=fib[i-1]+fib[i-2];
fib[i]=fib[i]%mod;
}
}
printf("%d\n",fib[n]);
}
return 0;
}
【2】
解题思路:
首先,题目大意是求出每个Fibonacci数,并用得到的Fibonacci数用(1E+9)+7来区模,并将其输出换行。(输入的N为Fibonacci下标).
需要注意的点是要注意在求Fibonacci数的时候可能会产生溢出(即使使用long long 类型存储,在N等于99时也会溢出),同样若是使用上一题的直接每次取模的方法,也会溢出(N小于2^31-1),所以这一题我使用的是矩阵乘法结合快速幂并同时取模的方法。
相关思想如下:
相关代码如下(0sec AC):
#include <stdio.h>
#include <math.h>
#define mod 1000000007
typedef long long LL;
/*
*定义一个2维的矩阵。
*/
struct matrix
{
LL m[2][2];
}base,result;
/*
*矩阵乘法
*/
matrix multi(matrix a,matrix b)
{
int i,j,k;
matrix temp;
for(i=0;i<2;i++){
for(j=0;j<2;j++){
temp.m[i][j]=0;
for(k=0;k<2;k++){
temp.m[i][j]+=a.m[i][k]*b.m[k][j];
temp.m[i][j]=temp.m[i][j]%mod;
}
}
}
return temp;
}
/*
*快速幂算法
*/
LL fast_mod(LL n)
{
base.m[0][0]=0;
base.m[0][1]=1;
base.m[1][0]=1;
base.m[1][1]=1;
//初始化
result.m[0][0]=1;
result.m[0][1]=0;
result.m[1][0]=0;
result.m[1][1]=1;
while(n){
if(n%2==1){
result=multi(result,base);
}
base=multi(base,base);
n=n/2;
}
return result.m[0][1];
}
int main(void)
{
LL n;// The number of test cases
while(scanf("%lld",&n)!=EOF&&(n>=0)&&(n<=pow(2,31)-1)){
printf("%lld\n",fast_mod(n));
}
return 0;
}
【3】
解题思路:
此题是要求哈夫曼树的WPL,有两种思路实现,一种是使用优先队列,一种是通过观察可知,所谓WPL就是哈夫曼树非叶子节点的值得和。
相关代码如下:
(1)优先队列实现如下:#include <queue>
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string>
#include <cmath>
#include <vector>
using namespace std;
struct X
{
char a;
int b;
}x;
priority_queue<int, vector<int>,greater<int> > Q;
int main(void)
{
int n;
while(scanf("%d",&n)!=EOF){
while(Q.empty()==false){
Q.pop();
}
for(int i=1;i<=n;i++){
cin>>x.a>>x.b;
Q.push(x.b);
}
int ans = 0;
while(Q.size()>1){
int c = Q.top();
Q.pop();
int d = Q.top();
Q.pop();
ans+=c+d;
Q.push(c+d);
}
printf("%d\n",ans);
}
return 0;
}
(2)非叶子节点实现如下:
#include <iostream>
#include <algorithm>
using namespace std;
int main(void)
{
int n;
while(cin>>n){
int sum=0;
int a[n];
char b[n];
for(int i=0;i<n;i++)
cin>>b[n]>>a[i];
for(int i=1;i<n;i++)
{
sort(a+i-1,a+n);
sum=a[i]+a[i-1]+sum;
a[i]=a[i]+a[i-1];
}
cout<<sum<<endl;
}
return 0;
}
本次实验其实挺简单的,主要是要细心。以后每次实验或是做题都要认真写好解题报告,这既是一种学习手段,也复习了实验内容;