算法实验课 lab1 解题报告

LAB1(共三题)
【1】
    

解题思路:

首先,题目大意是求出每个Fibonacci数,并用得到的Fibonacci数用(1E+9)+7来区模,并将其输出换行。(输入的N为Fibonacci下标).

需要注意的点是要注意在求Fibonacci数的时候可能会产生溢出(即使使用long long 类型存储,在N等于99时也会溢出),故我采用的方法是每次计算Fibonacci数时同时取模,则因为输入的N要小于100,故不会溢出。

相关代码如下(0sec AC):

#include <stdio.h>
#include <string.h>

#define mod 1000000007
int main(void)
{
    int n;// The number of test cases
    int fib[110];
    while(scanf("%d",&n)!=EOF&&(n>0)){
        int i;
        fib[0]=0;
        fib[1]=1;
        if(n>1){
            for(i=2;i<=n;i++){
                fib[i]=fib[i-1]+fib[i-2];
                fib[i]=fib[i]%mod;
            }
        }
        printf("%d\n",fib[n]);
    }

    return 0;
}


 【2】


解题思路:

首先,题目大意是求出每个Fibonacci数,并用得到的Fibonacci数用(1E+9)+7来区模,并将其输出换行。(输入的N为Fibonacci下标).

需要注意的点是要注意在求Fibonacci数的时候可能会产生溢出(即使使用long long 类型存储,在N等于99时也会溢出),同样若是使用上一题的直接每次取模的方法,也会溢出(N小于2^31-1),所以这一题我使用的是矩阵乘法结合快速幂并同时取模的方法。

相关思想如下:



相关代码如下(0sec AC):

#include <stdio.h>
#include <math.h>

#define mod 1000000007
typedef long long LL;
/*
*定义一个2维的矩阵。
*/
struct matrix
{
    LL m[2][2];
}base,result;

/*
*矩阵乘法
*/
matrix multi(matrix a,matrix b)
{
    int i,j,k;
    matrix temp;
    for(i=0;i<2;i++){
        for(j=0;j<2;j++){
            temp.m[i][j]=0;
            for(k=0;k<2;k++){
                temp.m[i][j]+=a.m[i][k]*b.m[k][j];
                temp.m[i][j]=temp.m[i][j]%mod;
            }
        }
    }
    return temp;
}
/*
*快速幂算法
*/
LL fast_mod(LL n)
{
    base.m[0][0]=0;
    base.m[0][1]=1;
    base.m[1][0]=1;
    base.m[1][1]=1;
    //初始化
    result.m[0][0]=1;
    result.m[0][1]=0;
    result.m[1][0]=0;
    result.m[1][1]=1;

    while(n){
        if(n%2==1){
            result=multi(result,base);
        }
        base=multi(base,base);
        n=n/2;
    }
    return result.m[0][1];
}

int main(void)
{
    LL n;// The number of test cases
    while(scanf("%lld",&n)!=EOF&&(n>=0)&&(n<=pow(2,31)-1)){
            printf("%lld\n",fast_mod(n));
    }

    return 0;
}
【3】


解题思路:

此题是要求哈夫曼树的WPL,有两种思路实现,一种是使用优先队列,一种是通过观察可知,所谓WPL就是哈夫曼树非叶子节点的值得和。

相关代码如下:

(1)优先队列实现如下:

#include <queue>
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string>
#include <cmath>
#include <vector>

using namespace std;

struct X
{
  char a;
  int b;
}x;
priority_queue<int, vector<int>,greater<int> > Q;
int main(void)
{
  int n;
  while(scanf("%d",&n)!=EOF){
  while(Q.empty()==false){
    Q.pop();
  }
  for(int i=1;i<=n;i++){
    cin>>x.a>>x.b;
    Q.push(x.b);
  }
  int ans = 0;
  while(Q.size()>1){
    int c = Q.top();
    Q.pop();
    int d = Q.top();
    Q.pop();

    ans+=c+d;
    Q.push(c+d);
  }
  printf("%d\n",ans);
  }
  return 0;
}                  


(2)非叶子节点实现如下:

#include <iostream>
#include <algorithm>
using namespace std;
int main(void)
{
    int n;
    while(cin>>n){
                  int sum=0;
                  int a[n];
                  char b[n];
                  for(int i=0;i<n;i++)
                  cin>>b[n]>>a[i];
                  for(int i=1;i<n;i++)
                  {
                          sort(a+i-1,a+n);
                          sum=a[i]+a[i-1]+sum;
                          a[i]=a[i]+a[i-1];
                          }
                  cout<<sum<<endl;
            }
    return 0;
}                         


总结:

本次实验其实挺简单的,主要是要细心。以后每次实验或是做题都要认真写好解题报告,这既是一种学习手段,也复习了实验内容;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值