祖冲之割圆法
【问题】我们可能都 听说过祖冲之用割圆法把圆周率计算到小数后7位。但具体是怎么操作的,可能就不太清楚了。其实从今天看来,原理很简单。
圆的内接正多边形的周长,比较接近圆的周长。
边数越多,越接近。
如果已知了正 n 边形的边长,可如下图,把它变成正 2n 边形(每条边分裂为两条)。
图中,红色为原来的边。蓝色为分裂后的新边。
已知了半径,原来的边长,根据勾股定理,很容易求出蓝边的长度。
把这个过程继续下去,就可以让多边形的周长很接近圆的周长了。
请编程,用此法求圆周率值。
分析:
不妨把半径定为1。
初始的多边形设为正六边形比较好。因为它长边长等于半径。
import math
def zu(n):
## 假设边长为1
def