同余方程(扩欧)

题目描述

求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入输出格式

输入格式:

输入只有一行,包含两个正整数 a, b,用一个空格隔开。

输出格式:

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

输入输出样例

输入样例#1:  复制
3 10
输出样例#1:  复制
7

说明

【数据范围】

对于 40%的数据,2 ≤b≤ 1,000;

对于 60%的数据,2 ≤b≤ 50,000,000;

对于 100%的数据,2 ≤a, b≤ 2,000,000,000。

NOIP 2012 提高组 第二天 第一题

必要知识储备

对于ax+by=c的不定方程,设r=gcd(a,b), 
if(c%r!=0)则说明c中不含a,b的最大公约数,因此无整数解 
if(c%r==0)将方程右边的c变为c*(r/c)后,变为ax+by=r,此时得到一组整数解:x0,y0(这是转换后方程的一组解,若要求得原解则需把x0,yo都*r/c) 

②gcd(a,b)=gcd(b,a%b) 
则会有:a*x0+b*y0=b*x1+(a%b)*y1 
那么化简得:a*x0+b*y0=b*x1+(a-a/b*b)*y1 
继续:a*x0+b*y0=b*x1+a*y1-a/b*b*y1 
再继续:a*x0+b*y0=a*y1+b*(x1-a/b*y1) 
我们得到通解为x0=y1,y0=x1-a/b*y1。【因为思想是相同的,故可能与其他文章重合,见谅】

看码:

#include<cstdio>

#include<iostream>
#include<algorithm>
using namespace std;
long long a,b,x,y;
int gcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1; y=0;//根据扩欧定理,①ax0+by0=ay1+b(x1-(a/b)*y)=a与b的最大公因数和②gcd(a,b)=gcd(b,a%b)得, 
return a;//直到 b=0时,最大公因数为此时的a, 由①逆推x0,y0。 
}
else
{
int ux=gcd(b,a%b,x,y);//保存最大公因数。
int uy=y;
y=x-(a/b)*y;
x=uy;
return ux;
}
}
int main()
{
cin>>a>>b;

long long u=gcd(a,b,x,y);//u没什么软用,只是我懒得改为void

        //若问的是解一个方程ax+by=c的x,则应求a,b的最大公约数r, 

x=(x%b+b)%b;//再用x0*(c/r)。 
cout<<x;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值