推荐系统
phantom66
这货很懒
展开
-
推荐系统的简单分类
为了能够更好的区分推荐系统的类型, 本文根据先人的分类方法, 将推荐系统分为以下几类:1. 基于内容系统为用户推荐与他们过去的兴趣类似的物品. 物品间的相似性是基于被比较的特征来计算的. 例如, 某个用户对一部喜剧电影有了正面的评价, 那么系统就能学会从喜剧类型中为该用户推荐电影.协同过滤这种方法是找到与用户有相同品味的用户, 然后将相似的用户过去喜欢的物品推荐给用户.两用户间的相似偏好是通过计算用原创 2015-12-20 14:40:55 · 4136 阅读 · 0 评论 -
推荐系统中常用的27个评测指标
推荐系统的27个指标 评价指标 名称 符号 偏好 是否依赖于推荐列表长度 备注 准确度 预测评分准确度 平均绝对误差 MAE 小 否 适用于比较关注精确的预测评分的转载 2015-12-20 14:57:51 · 3354 阅读 · 0 评论 -
推荐系统常用实验方法和主要测量指标
说明本文介绍评测一个推荐系统常用的实验方法和主要测量指标. 在<<推荐系统 技术,评估及高效算法>>第八章有介绍.评测推荐效果的实验方法离线实验往往是从日志系统中取得用户的行为数据,然后将数据集分成训练数据和测试数据,比如80%的训练数据和20%的测试数据(还可以交叉验证),然后在训练数据集上训练用户的兴趣模型,在测试集上进行测试。 优点:只需要一个数据集即可,不需要实际的推荐系统(实际的也不可能直原创 2015-12-20 14:58:55 · 2237 阅读 · 0 评论 -
推荐系统设计过程中的10条教训
2009年ACM推荐系统大会上Strand研究人员做了一个报告”推荐系统十堂课”, 在这个报告中Strand的研究人员总结了他们设计推荐系统的经验, 提出了10条在设计推荐系统中学习到的经验和教训:确定你真的需要推荐系统. 推荐系统只有在用户遇到信息过载时才必要. 如果你的网站物品不太多, 或者用户兴趣都比较单一, 那么也许并不需要推荐系统. 所以不要纠结于推荐系统这个词, 不要为了做推荐系统而作转载 2015-12-20 15:00:12 · 1434 阅读 · 0 评论 -
牛顿法,拟牛顿法,梯度下降,随机梯度下降
本文总结了牛顿法, 拟牛顿法,梯度下降和随机梯度下降的概念和计算公式.牛顿法首先考虑一维问题. 对于一个一维的函数,如果这个函数连续可微, 并且导数可以计算, 那么计算这个函数的最优解可以看成求解方程f′(x)=0f'(x)=0的根. 设F(x)=f′(x)F(x)=f'(x), 这个求解过程就变成了求解方程F(x)=0F(x)=0的过程. 使用上述迭代的方法就可以进行计算.迭代的方程为:原创 2016-04-15 22:47:40 · 3677 阅读 · 0 评论 -
从分类,排序,top-k多个方面对推荐算法稳定性的评价
介绍论文名: “classification, ranking, and top-k stability of recommendation algorithms”. 本文讲述比较推荐系统在三种情况下, 推荐稳定性情况. 与常规准确率比较的方式不同, 本文从另一个角度, 即推荐算法稳定性方面进行比较.详细参与比较的推荐算法包括:baseline传统基于用户传统基于物品oneSlopes原创 2016-04-23 13:44:57 · 9161 阅读 · 0 评论