Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
这题第一眼看到就想起来一个类似的题,就是把概率当成背包容量,但是概率是小数,把概率乘10的n次方就好了,但是本题应该是概率非常非常小,数据可能有0.00001这种。结果我数组开小了,乘100就会发生访问越界,数组开大了,乘100000就会发生超时。。这个无奈。。
于是就想到用抢劫的钱做背包容量,dp数组的意义是抢n元钱最大的逃跑概率。也就是(1-P)状态转移方程也非常好推。
dp[j] = max(dp[j], dp[j - vol[i]]+p[i]).可是~可是。本人还是对01背包掌握的不好,还以为dp[0]的值是0,结果这次什么也不抢的成功逃跑概率应该是1.。。结果坑了好久,以后一定要注意初始状态。上代码
#include <stdio.h>
#include <string.h>
double dp[10001];
double p[101];
int vol[101];
double max(double a, double b)
{
return a > b ? a : b;
}
int main()
{
int t, n;
double pi, temp;
int i, j, sum;
scanf("%d", &t);
while (t--)
{
scanf("%lf %d", &pi, &n);
pi = 1 - pi;
sum = 0;
for (i = 1; i <= n; i++)
{
scanf("%d %lf", &vol[i], &temp);
sum += vol[i];
p[i] = 1 - temp;
}
memset(dp, 0, sizeof(dp));
dp[0] = 1; //初始状态一定要想好
for (i = 1; i <= n; i++)
{
for (j = sum; j >= vol[i]; j--)
{
dp[j] = max(dp[j], dp[j - vol[i]] * p[i]);
}
}
j = sum;
while (dp[j] < pi)
{
j--;
}
printf("%d\n", j);
}
return 0;
}
Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.