poj 3181 Dollar Dayz

本文介绍了一种解决完全背包问题的方法,通过一个具体的例子详细解释了如何计算在给定预算内购买不同价格物品的组合数量。针对大数值情况,提出了使用数组存储中间结果的解决方案。
摘要由CSDN通过智能技术生成

Description

Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are: 

        1 @ US$3 + 1 @ US$2

        1 @ US$3 + 2 @ US$1

        1 @ US$2 + 3 @ US$1

        2 @ US$2 + 1 @ US$1

        5 @ US$1
Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

Input

A single line with two space-separated integers: N and K.

Output

A single line with a single integer that is the number of unique ways FJ can spend his money.


题意:给你两个数,你拥有的钱n,和单价从1到k的物品,输入n,k输出有多少种买东西的方案。。

一开始乐坏了,简单的完全背包,结果wrong了。。看讨论,说是到后来数据很大,用int存不下,所以改了一下,用数组存。过了

结论:这种题一定要考虑取值范围,这是平时能看讨论,要是比赛就坏了

代码:

#include <stdio.h>
#include <string.h>

int dp[1001][7];

int main(void)
{
    int n, k, flag;
    int i, j;

    while (scanf("%d %d", &n, &k) != EOF)
    {
        memset(dp, 0, sizeof(dp));
        dp[0][0] = 1;

        for (i = 1; i <= k; i++)
        {
            for (j = i; j <= n; j++)
            {
                flag = 0;
                dp[j][0] += dp[j - i][0];
                flag = dp[j][0] / 100000;
                dp[j][0] %= 100000;

                dp[j][1] += dp[j - i][1] + flag;
                flag = dp[j][1] / 100000;
                dp[j][1] %= 100000;

                dp[j][2] += dp[j - i][2] + flag;
                flag = dp[j][2] / 100000;
                dp[j][2] %= 100000;

                dp[j][3] += dp[j - i][3] + flag;
                flag = dp[j][3] / 100000;
                dp[j][3] %= 100000;

                dp[j][4] += dp[j - i][4] + flag;
                flag = dp[j][4] / 100000;
                dp[j][4] %= 100000;

                dp[j][5] += dp[j - i][5] + flag;
                flag = dp[j][5] / 100000;
                dp[j][5] %= 100000;

                dp[j][6] += dp[j - i][6] + flag;

            }
        }

        i = 6;
        while (dp[n][i] == 0)
        {
            i--;
        }

        printf("%d", dp[n][i--]);
        while (i >= 0)
        {
            printf("%.5d", dp[n][i--]);
        }
        printf("\n");
    }
    return 0;
}


内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值