poj 3181 Dollar Dayz

本文介绍了一种解决完全背包问题的方法,通过一个具体的例子详细解释了如何计算在给定预算内购买不同价格物品的组合数量。针对大数值情况,提出了使用数组存储中间结果的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are: 

        1 @ US$3 + 1 @ US$2

        1 @ US$3 + 2 @ US$1

        1 @ US$2 + 3 @ US$1

        2 @ US$2 + 1 @ US$1

        5 @ US$1
Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

Input

A single line with two space-separated integers: N and K.

Output

A single line with a single integer that is the number of unique ways FJ can spend his money.


题意:给你两个数,你拥有的钱n,和单价从1到k的物品,输入n,k输出有多少种买东西的方案。。

一开始乐坏了,简单的完全背包,结果wrong了。。看讨论,说是到后来数据很大,用int存不下,所以改了一下,用数组存。过了

结论:这种题一定要考虑取值范围,这是平时能看讨论,要是比赛就坏了

代码:

#include <stdio.h>
#include <string.h>

int dp[1001][7];

int main(void)
{
    int n, k, flag;
    int i, j;

    while (scanf("%d %d", &n, &k) != EOF)
    {
        memset(dp, 0, sizeof(dp));
        dp[0][0] = 1;

        for (i = 1; i <= k; i++)
        {
            for (j = i; j <= n; j++)
            {
                flag = 0;
                dp[j][0] += dp[j - i][0];
                flag = dp[j][0] / 100000;
                dp[j][0] %= 100000;

                dp[j][1] += dp[j - i][1] + flag;
                flag = dp[j][1] / 100000;
                dp[j][1] %= 100000;

                dp[j][2] += dp[j - i][2] + flag;
                flag = dp[j][2] / 100000;
                dp[j][2] %= 100000;

                dp[j][3] += dp[j - i][3] + flag;
                flag = dp[j][3] / 100000;
                dp[j][3] %= 100000;

                dp[j][4] += dp[j - i][4] + flag;
                flag = dp[j][4] / 100000;
                dp[j][4] %= 100000;

                dp[j][5] += dp[j - i][5] + flag;
                flag = dp[j][5] / 100000;
                dp[j][5] %= 100000;

                dp[j][6] += dp[j - i][6] + flag;

            }
        }

        i = 6;
        while (dp[n][i] == 0)
        {
            i--;
        }

        printf("%d", dp[n][i--]);
        while (i >= 0)
        {
            printf("%.5d", dp[n][i--]);
        }
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值