自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 神经网络与深度学习课程总结(四)

在结构上,RNN通过隐藏状态的循环传递(当前时刻的隐藏状态由当前输入和前一时刻的隐藏状态共同决定)实现对历史信息的保留,这种特性使其非常适合处理语音识别、自然语言处理(如机器翻译、文本生成)、时间序列预测等具有时序特性的任务。典型的RNN单元通过参数共享机制(如简单的tanh函数或更复杂的LSTM/GRU门控结构)学习序列模式,但基础RNN存在梯度消失/爆炸问题,限制了其处理长序列的能力,后续发展出LSTM和GRU等改进结构来解决这一局限性。反卷积部分则是将小尺寸的热点图上采样得到原尺寸的语义分割图像。

2025-06-04 15:09:35 1460

原创 深度学习第三次课程总结

②YOLOX:取消锚框(Anchor-Free),采用解耦检测头和动态样本匹配(SimOTA),提升精度与速度。特点:1400万张图像,2万类别,含物体位置标注,推动深度学习发展(如AlexNet)。特点:CIFAR-10含10类(6万图像),CIFAR-100含100类(分20超类)。融合浅层(细节)与深层(语义)特征,提升分割精度(如FCN-8s)。①定义:多类别检测任务中,计算每个类别的AP(平均精度),再取均值。特点:30万图像,80类别,含像素级分割掩码和语义文本描述。

2025-05-18 23:04:53 708

原创 深度学习第二次课程总结

LeNet-5由Yann LeCun于1998年提出,是首个成功应用于手写数字识别(MNIST数据集)的卷积神经网络(CNN),奠定了现代CNN的基础。结构:卷积 → 池化 → 卷积 → 池化 → 全连接。作用:提取局部特征(如边缘、纹理),通过滤波器(Filter/Kernel)滑动计算局部区域的加权和。局部连接与权值共享——卷积核仅连接输入局部区域,大幅减少参数量(传统全连接网络的千分之一)。平均池化(Subsampling)——通过2×2窗口取均值,降低特征图尺寸,增强平移不变性。

2025-05-11 23:08:43 682

原创 深度学习第一次课程总结

加一层隐节点(单元)为三层网络,可解决异或(XOR)问题由输入得到两个隐节点、一个输出层节点的输出,示意图如图。多层感知机是一种多层前馈网络,由多层神经网络构成,每层网络将输出传递给下一层网络。定理2 若隐层节点(单元)可任意设置,用三层S型非线性特性节点的网络,可以一致逼近紧集上的连续函数或按 范数逼近紧集上的平方可积函数。② 反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。向输出层,若输出层得到了期望的输出,则学习算法结束;

2025-05-06 22:41:39 246

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除