高斯参数对图像平滑的影响

高斯参数对图像平滑的影响

  高斯滤波器是一种线性滤波器,其作用是能够进行模糊处理(去除图像中一些不重要的细节)和减少噪声干扰。高斯滤波器与均值滤波器区别在于模板的系数随模板中心的距离增大而减小。以模板中心为原点,模板的权值呈高斯分布,如下图.

图1
  在均值滤波中我们较容易可得出这样的结论:滤波器越大,结果越模糊;噪声与细节同步衰弱,模板较大时,小物体几乎被滤除。原因在于在模板中所有点位的权值相同时,模板越大,则模板中心值越趋近于周围像素。这是一种朴素的,易于理解的想法。 但是以下相同图像,为什么在经过方差为7,滤波器大小为43*43的高斯滤波后(图2),与被方差为7滤波器大小为85*85的高斯滤波图像(图3)相减后最大值仅为0.75,一个小于1的数值呢?
图2                      图3
  我们可以知道高斯滤波是一种加权平均操作的滤波器,在高斯分布中,在(μ-σ,μ+σ)中概率为0.6526,在(μ-2σ,μ+2σ)中概率为0.9544,而在(μ-3σ,μ+3σ)中的概率为0.9974。所以可以认为几乎大部分的权重都集中在(μ-3σ,μ+3σ)区间内,甚至可以更激进的认为,基本都集中于(μ-2σ,μ+2σ)区间内。因而说,当模板中超过这个区间范围的,所有权限非常的小,对于最终值的影响微乎其微。而我们又可以从上面的拉伊达准则中知道,当σ越小,则权值越集中于模板中心,中心权值越大,则周围的数值影响越小,模糊效果越差;而σ越大,则权值相对就越分散,图像的模糊效果也就越明显。

  综上,我们可以得出结论,当方差σ越大时,模板大小对图像模糊效果越大。但当两个模板的大小都超过(μ-3σ,μ+3σ)后,其效果几乎相同,这解释了图2图3效果几乎相同的原因。而方差σ越小,则(μ-3σ,μ+3σ)限定区间越小,权值较为集中于模板中心,模板的影响就很有限了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值