- 博客(107)
- 收藏
- 关注
原创 基于DSP28335 SCI模块控制ESP8266 WiFi模块的实现方案
基于DSP28335 SCI模块控制ESP8266 WiFi模块的实现方案
2026-01-21 11:05:45
289
原创 竞争性自适应重加权算法
竞争性自适应重加权算法(CARS)是一种用于光谱特征选择的有效方法,它结合了竞争性重加权和自适应筛选机制,能够从高维光谱数据中挑选出最具有代表性的特征变量
2026-01-16 15:58:52
328
原创 MATLAB中实现信号迭代解卷积的几种方法
MATLAB中实现信号迭代解卷积的几种方法。解卷积通常用于从观测信号中恢复原始信号,特别是在存在噪声或模糊的情况下
2026-01-04 17:23:25
192
原创 基于单亲遗传算法的汽车路径规划实现
单亲遗传算法(Parthenogenetic Algorithm, PGA)通过仅依赖变异和选择操作生成新个体,避免了传统遗传算法的交叉操作,简化了流程并提升了计算效率。
2025-12-24 16:22:47
327
原创 注水法(Water-filling)解决MIMO信道功率优化
注水法(Water-filling)解决MIMO信道功率优化,通过智能地将更多功率分配给信道条件更好的子信道,实现信道容量的最大化。
2025-12-22 15:54:43
420
原创 关于滤波器组多载波系统中多输入多输出技术与峰均功率比分析方案
关于滤波器组多载波(FBMC)系统中多输入多输出(MIMO)技术与峰均功率比(PAPR)分析方案
2025-12-11 11:26:57
374
原创 一维光栅结构严格耦合波分析(RCWA)求解器
实现严格耦合波分析(Rigorous Coupled Wave Analysis, RCWA)的Python代码,用于求解一维周期性光栅结构的麦克斯韦方程数值解
2025-12-04 22:12:02
310
原创 利用Libevent在CentOS 7上打造异步网络应用
创建一个项目目录,并开始编写源代码。接口进行 socket 缓冲操作,以减少读写次数,提高效率。,以提供更细粒度的控制。为实现更好的性能,考虑使用边缘触发(此时,可以通过浏览器或命令行工具,如。的替代方法来管理事件循环,诸如。为了提升程序性能,可能会使用。)而非水平触发模式,并使用。
2025-11-06 16:08:36
170
原创 MATLAB使用遗传算法解决车间资源分配动态调度问题
最大完工时间降低22%(对比传统调度方法) 设备利用率提升18% 通过蒙特卡洛仿真验证动态响应时间<5分钟。参考代码 解决车间资源分配的动态调度问题,采用遗传算法。事件触发间隔:均匀分布在分钟。
2025-11-03 11:56:31
299
原创 JavaScript中的闭包:原理、应用与代码
闭包是指一个函数能够记住并访问它的词法作用域(lexical scope),即使这个函数在其词法作用域之外执行。简单来说,闭包就是函数与其词法作用域的组合体。在JavaScript中,每个函数在被创建时都会记住自己的词法作用域,这个作用域包含了函数在定义时能够访问的所有变量和函数。当这个函数被调用时,它会先在自己的词法作用域中查找变量,如果找不到,再沿着作用域链向上查找,直到找到全局作用域或抛出错误。
2025-11-02 17:31:09
286
原创 使用JavaScript和Node.js构建简单的RESTful API
本文将指导你如何使用JavaScript和Node.js的Express框架构建一个简单的RESTful API。我们将创建一个简单的用户管理系统,包括获取用户列表、添加新用户以及删除用户。首先,创建一个新的项目文件夹,并在其中初始化一个新的Node.js项目。接下来,我们需要安装Express框架和body-parser中间件。现在,我们可以运行这个Express应用。(DELETE请求),你将看到相应的响应。现在,我们可以创建一个名为。(POST请求,JSON数据。的文件,并添加以下代码。
2025-11-02 17:29:58
261
原创 基于MATLAB的无刷直流电机转速电流双闭环仿真实现
MATLAB中高效实现BLDC电机的高性能控制,适用于无人机、机器人等实时性要求高的场景。无刷直流电机(BLDC)双闭环控制系统由。:引入积分分离和前馈补偿。
2025-10-31 16:04:09
457
原创 基于STM32F4系列MCU和CS5530 24位SDADC的称重传感器系统实现
参考代码 使用STM32F4系列ARM-CPU和CS5530 24位SDADC的称重传感器应用程序 www.youwenfan.com/contentcsk/69521.html。
2025-10-29 14:29:25
769
原创 基于萤火虫算法(FA)优化支持向量机(SVM)参数的分类实现
参考代码 使用SVM算法进行分类 www.youwenfan.com/contentcsk/60063.html。(I0为初始亮度,γ为光吸收系数,ri为当前解与最优解的距离)(β为吸引度,rij为萤火虫i与j的距离,α为步长因子):萤火虫亮度与目标函数值(SVM分类准确率)成正比。(k为交叉验证折数,Accm为第m折准确率)(λ为衰减系数,初始αmax=0.5):同时优化准确率和模型复杂度。:惩罚因子C和核参数γ。
2025-10-28 15:09:24
364
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅