机器人资源管理与CEABOT赛事回顾
1. RoboCup团队视觉系统的有限资源管理
在RoboCup比赛中,机器人视觉系统的资源管理至关重要。为了验证所采用架构的适用性,研究人员针对资源需求不同的两种极端情况进行了实验,分别是需要高反应性的情况(如守门员扑救)和需要更多环境信息的情况(如机器人定位)。
实验使用了Nao V4版本的机器人。通过子采样技术降低图像分辨率,能够显著减少识别单个物体的计算时间,具体数据如下表所示:
| 分辨率 | 计算时间 (ms) |
| ---- | ---- |
| VGA | 20.22 |
| QVGA | 7.38 |
| QQVGA | 4.23 |
| 3QVGA | 3.61 |
| 4QVGA | 3.47 |
1.1 高反应性用例
在高反应性的场景中,例如守门员扑救,视觉系统的信息更新速率需要尽可能接近控制循环。假设守门员处于球场的正确且已知位置,此时只需要关于球的信息(即球相对于机器人的位置及其变化)。视觉信息提取的过程是从其中一个摄像头获取图像,根据球与机器人的距离(即图像中球的大小)进行子采样,仅分割橙色像素(球)和绿色像素(地平线),从而识别地平线以下的球并计算其相对于机器人的位置。高频率的视觉循环能够使守门员更快地做出扑救决策。不同实验中各模块的平均周期如下表所示:
| 模块 | 平均周期 (ms) |
| ---- | ---- |
| CONTROL | 15 |
| CMD | 10 |
| PAM | 16.67 |
| GM | 250 |
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



