1、决策树基本算法。
2、决策树递归返回得三个条件:1,2,3。
3、划分选择:1、信息增益基本概念,a:信息熵,b:信息增益。2、增益率。3、基尼指数。
4、防止过拟合方法----剪枝,a:预剪枝,b:后剪枝,两种方法得具体操作过程。
5、决策树过程中遇到的值问题,a:连续值处理方法--二分法,b:缺失值处理方法。
1、决策树基本算法。
2、决策树递归返回得三个条件:1,2,3。
3、划分选择:1、信息增益基本概念,a:信息熵,b:信息增益。2、增益率。3、基尼指数。
4、防止过拟合方法----剪枝,a:预剪枝,b:后剪枝,两种方法得具体操作过程。
5、决策树过程中遇到的值问题,a:连续值处理方法--二分法,b:缺失值处理方法。