机器学习
文章平均质量分 93
...
Tesera__
这个作者很懒,什么都没留下…
展开
-
第四次作业:猫狗大战挑战赛
文章目录关键步骤截图调参侠归一化常规操作:调调参,通过迭代比较取效果好的作为模型进行后面迁移到测试【研习社】的数据想法和解读训练过程中GPU掉线的操作就很秀,可以防止其自动掉线过程中的错误VGG分类神经网络的明显优点—规律很明显关键步骤截图调参侠归一化提高数据在不同的网络层训练时的分布相似性尽量使输入在激活函数的敏感区有利于梯度下降,加速收敛,模型更准确稳定normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[原创 2020-11-21 01:35:53 · 198 阅读 · 1 评论 -
在colab上用Faster-RCNN算法实现目标检测过程中各种排雷(tf&Keras)
文章目录VOC2007数据集标号不连续训练模型的后缀是.h5tf&Keras版本导致的各种语法问题100个问题里99个是路径的问题友好链接小感想VOC2007数据集标号不连续就是不连续的,只要保证是从官网下下来或者从可靠的链接来源下下来的就可以!(小声bb:我本来还以为是数据集上传到colab上面离线造成的数据丢失,又传了一遍结果还是缺少图片才怀疑是不是就是不连续的官网下载VOC2007数据集链接https://github.com/bubbliiiing/faster-rcnn-kera原创 2020-12-16 19:12:21 · 603 阅读 · 1 评论 -
高光谱图像分类
文章目录论文笔记摘要介绍高光谱图像 HSI2-D-CNN3-D-CNN充分利用2-D和3-DCNN的自动特征学习能力实验和分析公平比较分类结果的指标混合神经网络模型结论代码实现思考题3D卷积和2D卷积的区别训练网络会发现每次分类的结果都不一样的原因进一步提升高光谱图像的分类性能,可以如何使用注意力机制?论文笔记摘要HSI分类的性能对空间和光谱信息都有很强的依赖性空间3-D-CNN有助于从一堆光谱波段中进行联合空间-光谱特征表示2-D-CNN进一步学习了更抽象的空间表示混合CNN降低了模型的复杂原创 2021-01-04 00:23:38 · 3625 阅读 · 3 评论