Pyculiarity 项目教程
1. 项目的目录结构及介绍
Pyculiarity 是一个 Python 端口,用于 Twitter 的 AnomalyDetection R 包。以下是项目的目录结构及其介绍:
pyculiarity/
├── pyculiarity/
│ ├── __init__.py
│ ├── detect_ts.py
│ ├── detect_vec.py
│ └── utils.py
├── tests/
│ ├── __init__.py
│ └── test_detect_ts.py
├── .gitignore
├── LICENSE
├── MANIFEST.in
├── README.md
├── setup.cfg
└── setup.py
目录结构介绍
-
pyculiarity/: 包含项目的主要代码文件。
__init__.py
: 初始化文件,使该目录成为一个 Python 包。detect_ts.py
: 用于时间序列数据的异常检测函数。detect_vec.py
: 用于简单向量处理的异常检测函数。utils.py
: 包含一些辅助函数。
-
tests/: 包含项目的测试文件。
__init__.py
: 初始化文件,使该目录成为一个 Python 包。test_detect_ts.py
: 用于测试detect_ts.py
中的函数。
-
.gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
-
LICENSE: 项目的许可证文件,采用 GPL-3.0 许可证。
-
MANIFEST.in: 指定在打包时需要包含的非 Python 文件。
-
README.md: 项目的说明文件,包含项目的介绍、使用方法等。
-
setup.cfg: 项目的配置文件,包含一些安装和打包的配置。
-
setup.py: 用于安装项目的脚本。
2. 项目的启动文件介绍
Pyculiarity 项目的启动文件主要是 detect_ts.py
和 detect_vec.py
。这两个文件分别用于时间序列数据和简单向量数据的异常检测。
detect_ts.py
该文件包含 detect_ts
函数,用于处理时间序列数据的异常检测。函数的主要参数包括:
data
: 包含时间戳和值的 Pandas DataFrame。max_anoms
: 最大异常比例。direction
: 异常检测的方向(both
,pos
,neg
)。only_last
: 是否只检测最后一个时间段的异常。
detect_vec.py
该文件包含 detect_vec
函数,用于处理简单向量数据的异常检测。函数的主要参数包括:
data
: 包含数据的 Pandas DataFrame 或 Series。max_anoms
: 最大异常比例。direction
: 异常检测的方向(both
,pos
,neg
)。
3. 项目的配置文件介绍
Pyculiarity 项目的配置文件主要是 setup.cfg
和 setup.py
。
setup.cfg
setup.cfg
文件包含了一些安装和打包的配置,例如:
[metadata]
: 包含项目的元数据,如名称、版本、作者等。[options]
: 包含安装选项,如需要安装的包、依赖等。
setup.py
setup.py
文件是一个 Python 脚本,用于安装项目。它通常包含以下内容:
from setuptools import setup, find_packages
: 导入setuptools
模块。setup()
: 定义项目的安装配置,包括名称、版本、作者、依赖等。
通过这些配置文件,用户可以方便地安装和使用 Pyculiarity 项目。