探索未来安全:GUSTAVE - 嵌入式操作系统内核模糊测试平台

探索未来安全:GUSTAVE - 嵌入式操作系统内核模糊测试平台

去发现同类优质开源项目:https://gitcode.com/

项目介绍

GUSTAVE是一个专为嵌入式操作系统内核设计的模糊测试工具。它基于QEMU和AFL(及其forkserver子系统),能够像处理普通应用一样对内核进行模糊测试。由Airbus于2021年创建,该项目旨在提供一种多平台的解决方案,用于发现并修复潜在的安全漏洞。

项目技术分析

GUSTAVE的核心在于将AFL的模糊测试能力与QEMU的虚拟化功能相结合。它通过AFL的afl-fuzz工具启动QEMU,并在内部实现forkserver同步、测试用例转换为系统调用以及目标内核监控等功能。利用QEMU的TCG中间表示(IR)级别的二进制指令级插装实现代码覆盖率跟踪,但同时也支持仅针对特定代码部分的覆盖率分析。

此外,GUSTAVE引入了一种内存过滤位图机制,以检测可能的非法内存访问行为,而不仅仅是依赖于内核恐慌(kernel panic)事件。这种方法在高度确定性的限制性环境中尤为适用。

应用场景

GUSTAVE非常适合那些希望对嵌入式操作系统内核进行安全验证的开发者。无论是在智能设备、物联网设备还是其他有严格安全需求的平台上,GUSTAVE都能帮助找出可能导致不稳定或安全风险的异常行为。

项目特点

  1. 兼容性强:由于采用了QEMU,GUSTAVE可以跨平台运行,不受特定硬件或操作系统限制。
  2. 全面覆盖:GUSTAVE能够涵盖目标内核的所有系统调用,实现全范围模糊测试。
  3. 灵活性高:你可以选择使用代码覆盖率分析或在编译时注入AFL shim来针对性地追踪目标。
  4. 内存安全性:特有的内存过滤位图机制可以有效地识别非法内存访问,这在很多情况下是传统的内核崩溃监测无法做到的。

相比已有的模糊测试解决方案,如PowerFL、Project Triforce等,GUSTAVE更注重目标的通用性和内存访问监控的深度,从而提供了更为广泛的应用可能性。

如何使用

使用GUSTAVE需要构建AFL,安装QEMU的GUSTAVE集成版本,配置过滤位图和JSON目标文件,然后就可以启动测试了。完整的使用指南可以在项目提供的POK目标示例中找到。

想要了解更多关于GUSTAVE的详细信息,欢迎访问Airbus Security Lab的官方网站获取相关材料。

探索未来的安全边界,GUSTAVE是你的理想选择。让我们一起利用这个强大的工具,打造更加安全可靠的嵌入式系统吧!

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁英忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值