探索序列推荐的新纪元:Sequential Recommendation Datasets

探索序列推荐的新纪元:Sequential Recommendation Datasets

项目地址:https://gitcode.com/gh_mirrors/se/Sequential-Recommendation-Datasets

在这个数字化的时代,个性化推荐已经成为了互联网服务的重要组成部分。为了帮助开发者和研究人员更好地理解和构建高效序列推荐系统,我们推荐一个强大的开源项目——Sequential Recommendation Datasets。该项目集合了多种常用的数据集,并提供了便捷的工具,用于下载、预处理和批量加载数据,以及集成PyTorch的快速加载器。

项目简介

Sequential Recommendation Datasets是一个精心整理的资源库,包含了多个真实世界的数据集,包括Amazon的各个子类别、CiteULike、Foursquare、Gowalla、Lastfm等多个平台的用户行为记录。这个项目不仅提供了丰富的数据,还提供了一套灵活的工具,允许用户根据任务需求定制数据预处理流程,例如短时推荐(包括会话式推荐)和长短期推荐。

技术分析

项目采用Python编写,支持用户自定义数据预处理参数,如输入序列长度、目标序列长度、会话间隔等。此外,它还提供了基于用户或时间的分割方法,以适应不同的推荐策略。对于短期推荐任务,可以设置输入和目标物品的数量,还可以选择是否进行会话切割。对于长期和短期推荐任务,可以设置之前会话的数量以及当前会话的目标预测方式。

应用场景

这些数据集广泛适用于各种实际应用中,如电商网站的产品推荐、音乐播放平台的歌曲推荐、社交媒体的兴趣点建议等。通过这个项目,研究人员可以快速搭建实验环境,测试新模型在不同数据集上的表现,从而推动序列推荐算法的发展。

项目特点

  1. 多样化数据集:涵盖了多个领域的大型真实世界数据,适合不同类型的研究。
  2. 高度可配置:提供对数据处理过程的深度控制,适应各种推荐任务的需求。
  3. 高效加载:内置的DataLoader实现,与PyTorch兼容,优化了数据加载速度。
  4. 方便易用:简单的命令行接口,轻松完成数据下载、预处理和加载操作。

无论你是初学者还是经验丰富的开发者,Sequential Recommendation Datasets都是一个值得尝试的项目。借助这个工具,你可以更专注于开发创新的推荐算法,而无需花费大量时间准备数据。立即加入,探索序列推荐的无限可能!

Sequential-Recommendation-Datasets Download and preprocess popular sequential recommendation datasets 项目地址: https://gitcode.com/gh_mirrors/se/Sequential-Recommendation-Datasets

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吕真想Harland

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值