推荐开源项目:Cbc - 强大的混合整数线性规划求解器
Cbc COIN-OR Branch-and-Cut solver 项目地址: https://gitcode.com/gh_mirrors/cb/Cbc
项目介绍
Cbc,全称为Ccoin-or Branch and Cut,是一个基于C++的开源混合整数线性规划(MILP)求解器。它支持作为可调用库和独立执行程序使用,并与多种建模系统和包无缝集成。这个项目由一小群志愿者在非盈利组织COIN-OR基金会的支持下维护。
项目技术分析
Cbc的核心特性在于它的分支和切割算法,这是一种解决MILP问题的有效方法。它允许用户通过各种编程语言和接口进行操作,包括但不限于:
- 嵌入式建模语言和系统,如AIMMS、AMPL、CMPL、GAMS、Mathematica、Matlab、MiniZinc、MPL以及R。
- 基于Python的建模语言和扩展,如cbcpy、cvxpy、CyLP、Google的or-tools、PuLP、DiPPy、python-mip以及yaposib。
- 其他语言的扩展,如Julia的JuMP和Rust的rust-lp-modeler、good_lp。
- 在Excel和Google Sheets中的Spreadsheet扩展OpenSolver等。
Cbc的源代码以C++编写,遵循Eclipse Public License 2.0开放源代码许可证发布。
项目及技术应用场景
Cbc广泛应用于需要求解整数优化问题的领域,例如:
- 运筹学和数学优化:在物流、供应链管理、资源分配中寻找最佳决策。
- 工程设计:优化结构或系统的性能参数。
- 经济学:研究市场均衡或政策评估。
- 数据科学和机器学习:用于约束优化问题,如特征选择或模型参数优化。
- 生物信息学:基因组数据的分析和解释。
项目特点
- 开源:Cbc是完全免费的,其源代码可供任何人查看、修改和分发。
- 跨平台:支持Windows、Linux、macOS等多种操作系统,有预编译的二进制包供直接下载。
- 广泛兼容:与多个建模语言和工具箱接口良好,提供了多种API和命令行接口。
- 高效性能:Cbc采用了先进的优化算法,可在复杂问题上提供良好的解决方案速度。
- 活跃社区支持:项目由一群经验丰富的志愿者维护,不断更新并接受社区贡献。
对于需要解决整数线性规划问题的开发人员和研究人员来说,Cbc是一个强大且灵活的选择。无论是新手还是专家,都能从其丰富的功能和广泛应用场景中受益。立即探索Cbc项目,开启您的优化之旅吧!
Cbc COIN-OR Branch-and-Cut solver 项目地址: https://gitcode.com/gh_mirrors/cb/Cbc