GFormer: 图形变换器在推荐系统中的应用

GFormer: 图形变换器在推荐系统中的应用

GFormer [SIGIR'2023] "GFormer: Graph Transformer for Recommendation" GFormer 项目地址: https://gitcode.com/gh_mirrors/gf/GFormer

项目介绍

GFormer 是一个基于PyTorch实现的推荐系统模型,它结合了生成式自监督学习与图变换器架构,提出于SIGIR'2023的论文《图变换器用于推荐》。由李朝柳、夏良浩、任旭彬、叶耀文、许勇、黄超等作者共同研究完成。该项目旨在推荐系统中通过新颖的表示学习方法,利用图神经网络的力量来提升推荐的准确性和效率。

项目快速启动

环境准备

确保您的开发环境满足以下条件:

  • Python >= 3.8.13
  • PyTorch == 1.9.1
  • NumPy == 1.19.2
  • SciPy == 1.9.0
  • NetworkX == 2.8.6

安装GFormer项目所需的依赖项:

pip install -r requirements.txt

运行示例

首先,克隆项目到本地:

git clone https://github.com/HKUDS/GFormer.git
cd GFormer

然后,您可以使用提供的配置文件和数据集来进行模型训练,以Yelp数据集为例:

python train.py --dataset Yelp

请注意,您可能需要先下载并准备相应的数据集,并且调整配置文件以匹配您的实验设置。

应用案例和最佳实践

  • 个性化推荐: 利用GFormer的图变换能力,开发者可以构建高度个性化的推荐系统,提高用户的满意度和参与度。
  • 多模态融合: 结合文本、图像等多种特征,GFormer可优化推荐准确性,尤其是在内容丰富的场景下。
  • 冷启动问题缓解: 通过自监督学习机制,GFormer能够在有限的数据上提供更好的初始化表示,从而减轻冷启动难题。

最佳实践包括仔细选择合适的图划分策略,优化节点特征提取过程,并不断迭代模型以适应不同应用场景的需求。

典型生态项目

虽然GFormer本身是围绕推荐系统设计的,但其图神经网络和自监督学习的结合方式启发了许多相关领域的探索,如社交网络分析、知识图谱增强推荐等。在这些领域,类似的图结构处理技术被广泛应用于关系建模和信息传播,促进了跨行业应用的创新。开发者可以通过借鉴GFormer的原理和技术,将图变换器应用于自己的特定场景中,探索更多潜在的价值。


此文档提供了一个基本框架来理解和使用GFormer项目,实际操作时请参考项目最新文档和社区讨论,以获得更详细的指导和支持。

GFormer [SIGIR'2023] "GFormer: Graph Transformer for Recommendation" GFormer 项目地址: https://gitcode.com/gh_mirrors/gf/GFormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马冶娆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值