lilm:粤语论坛风格的语言模型

lilm:粤语论坛风格的语言模型

lilm Large language model fine-tuned to mimic LIHKG users' behavior lilm 项目地址: https://gitcode.com/gh_mirrors/li/lilm

项目介绍

lilm(LIHKG Language Model)是一个基于大型语言模型的项目,它使用来自LIHKG论坛的独特粤语口语数据和语言风格进行微调训练,从而创建出一个能够模仿论坛用户回答风格的粤语语言模型。这个项目受到了Yi Lin的bilibot项目和相关视频的启发,旨在通过教育和学术研究,展示大型语言模型在模仿特定语言风格方面的能力。

项目技术分析

lilm项目采用了开源的基础模型Qwen/Qwen1.5-32B-Chat,该模型具有32亿个参数,并使用MLX框架在Apple Silicon平台上进行训练。项目利用LoRA算法对基础模型进行微调,大幅减少了训练所需的内存和计算资源。LoRA算法通过使用两个较小的矩阵估计模型中大型矩阵的变化,显著减少了需要调整的参数数量。

项目在数据处理上进行了严格筛选,确保了数据的质量和多样性。数据集由LIHKG论坛上大规模公开数据构成,并通过一系列过滤条件进行筛选,如确保回复不是由帖子作者发出的第一条回复、回复获得足够的正向反馈等。最终形成了包含约60,000个符合条件的帖子,以及相应的验证集和测试集。

项目技术应用场景

lilm项目可以在多种场景下应用,例如:

  1. 社交媒体管理:用于自动生成社交媒体平台上的回复,以特定论坛的风格与用户互动。
  2. 客户服务:在粤语区域的客户服务中,提供更加本地化和个性化的服务体验。
  3. 内容创作:为粤语内容创作者提供辅助创作工具,帮助他们高效地生成符合社区风格的内容。
  4. 学术研究:研究粤语语言特点和论坛交流模式,为语言学研究提供新的视角。

项目特点

  1. 独特的语言风格:通过微调训练,lilm能够模仿LIHKG论坛用户独特的粤语口语风格。
  2. 高效的训练方法:采用LoRA算法,大幅降低了训练资源的需求,使模型可以在资源有限的设备上进行微调。
  3. 数据质量保证:通过严格的数据筛选流程,确保了训练数据的质量和多样性。
  4. 灵活的配置:项目允许用户通过.env文件调整配置信息,以适应不同的使用需求。

以下是lilm项目的详细技术分析和应用场景,帮助您更好地了解和使用这个开源项目。

微调与数据集

微调是深度学习中的一个重要过程,它允许模型在特定任务上进一步优化其性能。lilm项目使用的数据集是从LIHKG论坛上抓取的公开数据,这些数据经过严格的筛选和处理,确保了模型训练的质量。筛选条件包括:

  • 首个回复不是由帖子作者发出的。
  • 回复获得至少20个正向反馈。
  • 回复不是对其他回复的回复。
  • 回复中不包含外部链接或嵌入内容。
  • 回复中不包含敏感词汇。

这些筛选条件有助于提高数据集的质量,减少噪声,使模型能够更好地学习论坛中的交流模式。

基础模型与LoRA算法

Qwen/Qwen1.5-32B-Chat是一个具有32亿参数的开源大型语言模型,它在本项目中作为基础模型。为了降低训练资源的需求,项目采用了LoRA算法。LoRA通过使用两个较小的矩阵来估计模型中大型矩阵的变化,从而显著减少了训练中的参数数量。

传统的训练和微调方法需要同时调整模型中的所有参数,这需要大量的内存和计算资源。而LoRA算法只调整模型中的部分参数,大大降低了资源需求,使得模型可以在资源有限的设备上进行微调。

梯度检查点与模型融合

梯度检查点是训练大型神经网络时节省内存的一种技术。它通过在训练过程中只保存某些关键层的输出来减少内存使用,当需要计算梯度时,这些关键点被用来重建丢失的中间数据。

微调完成后,MLX-LM可以将适配器和原始模型融合在一起,生成一个完整的模型。这个模型可以直接通过指定路径使用,无需额外下载。

通过以上分析,我们可以看到lilm项目在技术和应用上的优势。它不仅为粤语区域提供了一个强大的语言模型,而且通过创新的训练方法,使得模型更加高效和易于部署。无论您是社交媒体经理、客户服务代表还是内容创作者,lilm项目都可以为您提供有价值的工具,帮助您更好地完成任务。

在未来的发展中,lilm项目将继续优化模型性能,扩展应用场景,并为用户提供更加灵活和高效的服务。如果您对lilm项目感兴趣,欢迎尝试使用,并在实践中提供反馈和建议,共同推动项目的进步。

lilm Large language model fine-tuned to mimic LIHKG users' behavior lilm 项目地址: https://gitcode.com/gh_mirrors/li/lilm

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/72147cbc453d 在当今信息化时代,高校社团管理的高效性与便捷性至关重要。基于 Spring Boot 开发的社团管理系统,致力于打造一个功能全面、操作便捷且安全可靠的平台,以满足高校社团的日常运营需求。本文将深入剖析该系统的架构设计、核心功能以及实现原理。 Spring Boot 以其轻量级和快速开发的特性,成为众多企业级应用的首选框架。本社团管理系统采用 Spring Boot 搭建,并遵循 RESTful API 设计原则,构建出一个松耦合、模块化的架构。借助 Spring Boot 的自动配置功能,项目初始化工作得以大幅简化,使开发者能够更加专注于业务逻辑的开发。 权限管理是系统安全的关键环节。本系统引入多级权限控制机制,确保不同角色(如管理员、普通成员等)能够访问其对应的系统功能。通常会借助 Spring Security 或 Apache Shiro 等安全框架,通过角色、权限与资源的映射关系,实现对用户操作的精细化管理。 为了提升用户体验和提高信息传递效率,系统集成了短信接口。在用户注册、密码找回、活动报名等关键操作环节,通过短信验证码进行验证。这需要与第三方短信服务提供商(如阿里云、腾讯云等)进行对接,利用其 SDK 实现短信的发送与接收功能。 会员管理:涵盖会员注册、登录、信息修改及权限分配等功能,方便社团成员进行自我管理。 活动管理:支持活动的创建、审批、报名以及评价等全流程管理,便于社团组织各类活动。 场地管理:实现场地的预定、审批和使用记录管理,确保资源的有效分配。 会议管理:提供会议安排、通知以及签到等功能,提升会议组织效率。 社团管理:包括社团的创建、修改、解散以及社团成员管理等功能。 消息通知:能够实时推送系统消息,保障信息的及时传达。 文件下发:支持文件的上传与下载,方便
资源下载链接为: https://pan.quark.cn/s/79a048d3db20 格陵兰多媒体教学系统V7.0(专业版)-7.0.016是一款专为局域网有线网络环境设计的电子教室机房教学软件,致力于提升教学效率与互动性,助力教师高效管理与掌控课堂。该专业版系统具备丰富功能,满足现代教育需求。 其核心功能之一是广播教学。教师可将自身电脑屏幕内容实时同步至所有学生电脑,全班同学能同步查看相同教学内容,无论是演示课件、播放视频还是操作软件,都能实现统一教学节奏,从而提升教学效率。 个性化小组教学功能则允许教师针对不同学生或小组开展针对性教学。教师可选择部分学生进行单独讲解或组织分组讨论,既能兼顾每个学生的学习进度,又能激发学生间的合作与竞争,增强学习的趣味性和深度。 此外,教学测验功能便于教师进行课堂评估。教师可设计并发布在线测验,实时收集学生答题情况,快速掌握学生对课程内容的理解程度,及时调整教学策略。这种即时反馈机制有助于优化教学过程,保障学生学习效果。 在远程集控管理方面,该系统为教师提供了强大工具。教师可远程操控学生电脑,进行屏幕监控,防止学生课堂分心或进行无关活动,还能统一管理学生电脑设置,如禁用特定程序或网站,维护课堂秩序。 系统中还包含Searcher.exe,这可能是一款搜索工具,方便教师和学生快速查找课堂所需教学资源。而Readme.txt通常记录了软件的安装指南、更新日志或使用注意事项,是初次使用者获取软件信息的重要途径。 格陵兰多媒体教学系统V7.0(专业版)融合了现代信息技术与教育实践,提供了一站式教学解决方案。它使教师能够更灵活、高效地开展教学活动,为学生创造更优质的学习体验。凭借其多元化功能,该系统不仅提高了教学效率,还促进了师生互动交流,契合信息化时代教育需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马冶娆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值