MPNN 项目使用教程
1. 项目的目录结构及介绍
mpnn/
├── CONTRIBUTING
├── LICENSE
├── README
├── graph_util.py
├── mpnn.py
├── mpnn_test.py
├── set2vec.py
└── set2vec_test.py
- CONTRIBUTING: 贡献指南文件,指导如何为项目贡献代码。
- LICENSE: 项目使用的开源许可证,本项目使用 Apache-2.0 许可证。
- README: 项目介绍文件,包含项目的基本信息和使用说明。
- graph_util.py: 图处理工具文件,包含与图相关的辅助函数。
- mpnn.py: 项目核心文件,包含 MPNN 模型的定义和实现。
- mpnn_test.py: MPNN 模型的单元测试文件,用于验证模型的正确性。
- set2vec.py: 集合到向量的转换工具文件,包含相关函数。
- set2vec_test.py: set2vec 工具的单元测试文件,用于验证其正确性。
2. 项目的启动文件介绍
项目的主要启动文件是 mpnn.py
,该文件包含了 MPNN 模型的定义和实现。要启动项目,可以直接运行该文件,或者在其他脚本中导入并使用该模型。
# 示例:启动 MPNN 模型
from mpnn import MPNN
# 初始化模型
model = MPNN()
# 使用模型进行训练或预测
model.train()
3. 项目的配置文件介绍
项目中没有明确的配置文件,但可以通过修改 mpnn.py
中的参数来配置模型。例如,模型的超参数可以在初始化时进行设置。
# 示例:配置 MPNN 模型的超参数
from mpnn import MPNN
# 初始化模型并设置超参数
model = MPNN(hidden_dim=64, num_layers=3)
# 使用模型进行训练或预测
model.train()
通过这种方式,可以根据具体需求调整模型的配置。