geo-ambient-occlusion 项目使用教程

geo-ambient-occlusion 项目使用教程

geo-ambient-occlusion Generates a per-vertex ambient occlusion array for arbitrary meshes. 项目地址: https://gitcode.com/gh_mirrors/ge/geo-ambient-occlusion

1、项目介绍

geo-ambient-occlusion 是一个用于生成任意网格的每顶点环境光遮蔽(Ambient Occlusion)数组的工具。环境光遮蔽是一种用于增强3D场景真实感的渲染技术,通过模拟光线在物体表面上的散射情况,使得物体的阴影部分更加柔和和真实。

该项目基于 regl WebGL 库构建,支持多种输入格式,包括平面数组、数组数组、类型化数组和 ndarray。它通过从随机视点渲染多个阴影贴图,并平均每个顶点的遮蔽值来计算环境光遮蔽。最终,生成的遮蔽数据以 Float32Array 的形式返回,可以直接用作着色器程序中的属性。

2、项目快速启动

安装

首先,确保你已经安装了 npm,然后通过以下命令安装 geo-ambient-occlusion

npm install geo-ambient-occlusion

示例代码

以下是一个简单的示例代码,展示了如何使用 geo-ambient-occlusion 生成环境光遮蔽数据:

// 引入依赖
const geoao = require('geo-ambient-occlusion');
const dragon = require('stanford-dragon/2');

// 创建环境光遮蔽采样器
const aoSampler = geoao(dragon.positions, {
  cells: dragon.cells
});

// 采样256次
for (let i = 0; i < 256; i++) {
  aoSampler.sample();
}

// 获取最终的环境光遮蔽数据
const ao = aoSampler.report();

// 释放资源
aoSampler.dispose();

// 输出环境光遮蔽数据
console.log(ao);

代码解释

  1. 引入依赖:首先引入 geo-ambient-occlusionstanford-dragon 模型。
  2. 创建采样器:使用 geoao 函数创建一个环境光遮蔽采样器,传入模型的顶点数据和面片数据。
  3. 采样:通过循环调用 sample() 方法进行多次采样,以获得更准确的环境光遮蔽数据。
  4. 获取数据:调用 report() 方法获取最终的环境光遮蔽数据。
  5. 释放资源:调用 dispose() 方法释放采样器占用的资源。

3、应用案例和最佳实践

应用案例

geo-ambient-occlusion 可以广泛应用于需要增强3D场景真实感的项目中,例如:

  • 游戏开发:在游戏中使用环境光遮蔽技术可以显著提升场景的视觉效果,使得阴影更加柔和和真实。
  • 虚拟现实(VR):在VR应用中,环境光遮蔽可以帮助用户更好地感知场景的深度和细节。
  • 建筑可视化:在建筑可视化项目中,环境光遮蔽可以增强模型的真实感,使得建筑物的阴影更加自然。

最佳实践

  • 多次采样:为了获得更准确的环境光遮蔽数据,建议进行多次采样(例如256次或更多)。
  • 优化性能:如果性能是一个问题,可以考虑减少采样次数或使用更高性能的硬件。
  • 自定义参数:根据具体需求,可以调整 resolutionbias 参数,以获得最佳的渲染效果。

4、典型生态项目

geo-ambient-occlusion 作为一个专注于环境光遮蔽的工具,可以与以下生态项目结合使用:

  • Three.js:一个广泛使用的3D图形库,可以与 geo-ambient-occlusion 结合使用,增强 Three.js 场景的真实感。
  • reglgeo-ambient-occlusion 基于 regl 构建,因此可以与 regl 生态中的其他项目无缝集成。
  • Babylon.js:另一个强大的3D图形库,可以与 geo-ambient-occlusion 结合使用,提升 Babylon.js 场景的视觉效果。

通过结合这些生态项目,开发者可以构建出更加逼真和引人入胜的3D应用。

geo-ambient-occlusion Generates a per-vertex ambient occlusion array for arbitrary meshes. 项目地址: https://gitcode.com/gh_mirrors/ge/geo-ambient-occlusion

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值