手写数学表达式识别:PyTorch实现

手写数学表达式识别:PyTorch实现

Pytorch-Handwritten-Mathematical-Expression-Recognition This program uses Attention and Coverage to realize HMER and this program is based on Pytorch. Pytorch-Handwritten-Mathematical-Expression-Recognition 项目地址: https://gitcode.com/gh_mirrors/py/Pytorch-Handwritten-Mathematical-Expression-Recognition

项目介绍

在人工智能领域,手写数学表达式识别(Handwritten Mathematical Expression Recognition, HMER)是一个具有挑战性的任务。它不仅要求模型能够识别单个字符,还需要理解字符之间的结构关系,从而准确地解析整个数学表达式。本项目由Hongyu Wang开发,基于PyTorch框架,结合了Attention和Coverage机制,实现了高效的手写数学表达式识别。

项目技术分析

技术栈

  • PyTorch 1.0: 作为深度学习框架,PyTorch提供了灵活的张量计算和动态计算图,非常适合研究和开发。
  • DenseNet: 项目中使用了DenseNet作为特征提取网络,DenseNet通过密集连接的方式增强了特征的复用,提高了模型的性能。
  • Attention机制: 通过Attention机制,模型能够聚焦于输入图像的不同部分,从而更好地理解复杂的数学表达式。
  • Coverage机制: Coverage机制帮助模型避免重复关注同一区域,提高了识别的准确性。

训练与测试流程

  1. 环境配置: 安装Python 3.6和PyTorch 1.0。
  2. 数据准备: 下载并解压训练和测试数据,使用gen_pkl.py将图像数据压缩为.pkl文件。
  3. 模型训练: 运行Train.py进行模型训练。
  4. 模型测试: 使用Densenet_testway.py进行测试。

项目及技术应用场景

应用场景

  • 教育领域: 自动批改学生手写的数学作业,提高教学效率。
  • 文档数字化: 将手写数学公式转换为可编辑的数字格式,便于文档的存储和检索。
  • 人机交互: 在智能设备上实现手写数学公式的实时识别,提升用户体验。

实验结果

本项目在CROHME 2016数据集上进行了测试,实验结果表明:

  • WER loss: 17.160%
  • ExpRate: 38.595%

这些结果展示了模型在手写数学表达式识别任务中的优异表现。

项目特点

特点

  1. 高效性: 结合了DenseNet、Attention和Coverage机制,模型在处理复杂数学表达式时表现出色。
  2. 可视化: 项目提供了识别结果和Attention机制的可视化,便于用户理解和调试模型。
  3. 易用性: 项目提供了详细的训练和测试流程,用户可以轻松上手。

可视化示例

  • 识别结果可视化: 识别结果 识别结果

  • Attention机制可视化: 输入图像 Attention步骤 Attention步骤 Attention步骤

结语

本项目不仅提供了一个高效的手写数学表达式识别解决方案,还通过可视化工具帮助用户更好地理解模型的运作机制。无论你是研究者还是开发者,这个项目都值得一试。快来体验一下吧!

Pytorch-Handwritten-Mathematical-Expression-Recognition This program uses Attention and Coverage to realize HMER and this program is based on Pytorch. Pytorch-Handwritten-Mathematical-Expression-Recognition 项目地址: https://gitcode.com/gh_mirrors/py/Pytorch-Handwritten-Mathematical-Expression-Recognition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值