Trigger.dev项目实战:基于ReactFlow构建人机交互工作流
项目概述
本文将介绍如何使用Trigger.dev结合ReactFlow构建一个包含人工审核环节的工作流系统。该系统能够自动生成新闻文章的音频摘要,并在关键节点引入人工审核机制,确保输出内容的质量。
技术架构
这个示例项目采用了现代化的技术栈组合:
- 前端框架:使用Next.js构建Web应用
- 工作流可视化:采用ReactFlow实现工作流节点的可视化展示
- 实时通信:利用Trigger.dev的Realtime功能订阅任务运行状态
- 人工审核机制:通过Trigger.dev的waitpoint tokens实现人工介入流程
- AI能力:集成OpenAI API生成文章摘要
- 语音合成:使用ElevenLabs将文本转换为语音
核心功能解析
1. 工作流任务分解
系统将整个流程分解为多个独立的Trigger.dev任务:
- 文章摘要生成:调用OpenAI API对输入文章进行智能摘要
- 文本转语音:通过ElevenLabs API将摘要转换为音频文件并存储
- 摘要审核:关键的人工审核环节,需要用户确认摘要质量
- 工作流编排:主任务负责协调各个子任务的执行顺序和数据传递
2. ReactFlow节点设计
系统实现了三种自定义节点类型:
- 输入节点:工作流起点,接收文章URL输入
- 动作节点:实时显示Trigger.dev任务的执行状态
- 审核节点:展示摘要结果并等待用户确认,使用Realtime API获取审核状态
3. 工作流编排实现
工作流的整体编排由Flow组件负责,主要功能包括:
- 节点布局与连接关系定义
- 任务运行状态的实时订阅
- 将运行详情传递给各个节点
关键技术:Waitpoint Tokens
Waitpoint Tokens是Trigger.dev提供的重要特性,用于实现人工审核流程:
// 创建等待令牌
const reviewWaitpointToken = await wait.createToken({
tags: [workflowTag],
timeout: "1h",
idempotencyKey: `review-summary-${workflowTag}`,
});
// 完成令牌(当用户完成审核后)
await wait.completeToken<ReviewPayload>(
{ id: tokenId },
{
approved: true,
approvedAt: new Date(),
approvedBy: user,
}
);
这种机制允许工作流在特定节点暂停执行,等待人工干预后再继续后续流程,非常适合需要质量控制的场景。
项目特点与优势
- 可视化工作流:通过ReactFlow直观展示整个处理流程
- 实时状态更新:所有任务状态实时反馈到前端界面
- 灵活的人工介入:在关键节点设置审核环节,平衡自动化与质量控制
- 模块化设计:各功能模块解耦,便于扩展和维护
应用场景扩展
虽然本示例的工作流是静态设计的,但同样的技术可以应用于多种需要人工审核的场景:
- 内容审核系统
- 金融交易审批流程
- 医疗诊断辅助系统
- 法律文档自动生成与审核
总结
Trigger.dev与ReactFlow的结合为构建复杂的人机交互工作流提供了强大而灵活的解决方案。通过本项目的学习,开发者可以掌握如何将自动化流程与人工审核有机结合,在实际业务中实现效率与质量的平衡。Waitpoint Tokens等特性使得这类系统的开发变得更加简单和可靠。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考