MedicalGPT项目中的PPO训练全流程解析
项目概述
MedicalGPT是一个专注于医疗领域的GPT模型训练项目,通过多阶段训练流程将通用大语言模型适配到医疗专业领域。本文将详细解析其中的PPO(Proximal Policy Optimization)训练全流程,帮助读者理解如何通过强化学习优化医疗对话模型。
训练流程总览
MedicalGPT的训练流程分为四个关键阶段:
- 增量预训练(PT):在海量领域文本数据上二次预训练
- 有监督微调(SFT):构造指令微调数据集进行精调
- 奖励模型训练(RM):训练奖励模型对齐人类偏好
- 强化学习训练(RL/PPO):基于人类反馈优化模型
第一阶段:增量预训练(PT)
核心目标
通过领域数据(如医疗文本)对基础模型进行二次训练,使其适应特定领域的数据分布。
关键配置参数
- 模型选择:Qwen/Qwen2.5-0.5B
- 训练数据:中文医疗文本(示例中使用了天龙八部小说作为演示)
- 训练参数:
--per_device_train_batch_size 3 --learning_rate 2e-4 --num_train_epochs 1 --block_size 128 --lora_rank 8
技术要点
- 使用LoRA(Low-Rank Adaptation)技术进行高效微调
- 支持bf16混合精度训练节省显存
- 通过gradient_checkpointing减少显存占用
第二阶段:有监督微调(SFT)
核心目标
使用指令数据对模型进行精调,使其能够理解并遵循人类指令。
关键配置变化
- 学习率调整为更小的2e-5
- 移除了block_size参数
- 使用医疗对话数据进行训练
技术要点
- 保持LoRA微调方式
- 调整了weight_decay等正则化参数
- 使用更小的batch_size以适应对话数据的特性
第三阶段:奖励模型训练(RM)
核心目标
训练一个能够评估回答质量的奖励模型,为强化学习阶段提供反馈信号。
关键配置变化
- 使用fp16而非bf16
- 设置了max_source_length和max_target_length
- 更小的batch_size(1)
技术要点
- 采用对比学习方式训练奖励模型
- 需要设置remove_unused_columns=False保留必要字段
- 使用不同的torch_dtype配置
第四阶段:强化学习训练(PPO)
核心目标
通过强化学习优化模型,使其生成更符合人类偏好的回答。
关键配置
--sft_model_path ./merged-sft
--reward_model_path ./merged-rm
--response_length 1000
--num_train_epochs 3
技术实现
- 使用PPO算法进行策略优化
- 需要同时加载SFT模型和奖励模型
- 设置较长的response_length以适应医疗问答需求
- 使用tensorboard记录训练过程
训练结果与模型合并
每个阶段训练完成后:
- 保存LoRA适配器权重(adapter_model.safetensors)
- 可通过merge_peft_adapter.py将适配器合并到基础模型
- 训练日志可通过tensorboard查看
实际应用建议
- 数据准备:医疗领域需要准备专业的医学文本和问答数据
- 模型选择:实际应用中建议使用更大的基础模型
- 参数调整:根据具体硬件调整batch_size等参数
- 评估指标:设计专业的医疗领域评估标准
常见问题解答
Q:为什么PT阶段是可选的? A:当领域数据不足时,SFT阶段也能有效注入领域知识。实验表明SFT通常比PT更高效。
Q:LoRA训练有什么优势? A:LoRA通过低秩适配大幅减少训练参数量,可在消费级GPU上微调大模型,且便于保存和分享适配器。
Q:如何监控训练过程? A:使用tensorboard监控训练指标,命令示例:
tensorboard --logdir outputs-ppo-v1/runs --host 0.0.0.0 --port 8009
通过这套完整的训练流程,开发者可以将通用语言模型转化为专业的医疗对话助手,在实际应用中提供更准确、可靠的医疗咨询回答。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考