MedicalGPT项目中的PPO训练全流程解析

MedicalGPT项目中的PPO训练全流程解析

MedicalGPT MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training Pipeline. 训练医疗大模型,实现了包括增量预训练、有监督微调、RLHF(奖励建模、强化学习训练)和DPO(直接偏好优化)。 MedicalGPT 项目地址: https://gitcode.com/gh_mirrors/me/MedicalGPT

项目概述

MedicalGPT是一个专注于医疗领域的GPT模型训练项目,通过多阶段训练流程将通用大语言模型适配到医疗专业领域。本文将详细解析其中的PPO(Proximal Policy Optimization)训练全流程,帮助读者理解如何通过强化学习优化医疗对话模型。

训练流程总览

MedicalGPT的训练流程分为四个关键阶段:

  1. 增量预训练(PT):在海量领域文本数据上二次预训练
  2. 有监督微调(SFT):构造指令微调数据集进行精调
  3. 奖励模型训练(RM):训练奖励模型对齐人类偏好
  4. 强化学习训练(RL/PPO):基于人类反馈优化模型

第一阶段:增量预训练(PT)

核心目标

通过领域数据(如医疗文本)对基础模型进行二次训练,使其适应特定领域的数据分布。

关键配置参数

  • 模型选择:Qwen/Qwen2.5-0.5B
  • 训练数据:中文医疗文本(示例中使用了天龙八部小说作为演示)
  • 训练参数:
    --per_device_train_batch_size 3
    --learning_rate 2e-4
    --num_train_epochs 1
    --block_size 128
    --lora_rank 8
    

技术要点

  1. 使用LoRA(Low-Rank Adaptation)技术进行高效微调
  2. 支持bf16混合精度训练节省显存
  3. 通过gradient_checkpointing减少显存占用

第二阶段:有监督微调(SFT)

核心目标

使用指令数据对模型进行精调,使其能够理解并遵循人类指令。

关键配置变化

  • 学习率调整为更小的2e-5
  • 移除了block_size参数
  • 使用医疗对话数据进行训练

技术要点

  1. 保持LoRA微调方式
  2. 调整了weight_decay等正则化参数
  3. 使用更小的batch_size以适应对话数据的特性

第三阶段:奖励模型训练(RM)

核心目标

训练一个能够评估回答质量的奖励模型,为强化学习阶段提供反馈信号。

关键配置变化

  • 使用fp16而非bf16
  • 设置了max_source_length和max_target_length
  • 更小的batch_size(1)

技术要点

  1. 采用对比学习方式训练奖励模型
  2. 需要设置remove_unused_columns=False保留必要字段
  3. 使用不同的torch_dtype配置

第四阶段:强化学习训练(PPO)

核心目标

通过强化学习优化模型,使其生成更符合人类偏好的回答。

关键配置

--sft_model_path ./merged-sft
--reward_model_path ./merged-rm
--response_length 1000
--num_train_epochs 3

技术实现

  1. 使用PPO算法进行策略优化
  2. 需要同时加载SFT模型和奖励模型
  3. 设置较长的response_length以适应医疗问答需求
  4. 使用tensorboard记录训练过程

训练结果与模型合并

每个阶段训练完成后:

  1. 保存LoRA适配器权重(adapter_model.safetensors)
  2. 可通过merge_peft_adapter.py将适配器合并到基础模型
  3. 训练日志可通过tensorboard查看

实际应用建议

  1. 数据准备:医疗领域需要准备专业的医学文本和问答数据
  2. 模型选择:实际应用中建议使用更大的基础模型
  3. 参数调整:根据具体硬件调整batch_size等参数
  4. 评估指标:设计专业的医疗领域评估标准

常见问题解答

Q:为什么PT阶段是可选的? A:当领域数据不足时,SFT阶段也能有效注入领域知识。实验表明SFT通常比PT更高效。

Q:LoRA训练有什么优势? A:LoRA通过低秩适配大幅减少训练参数量,可在消费级GPU上微调大模型,且便于保存和分享适配器。

Q:如何监控训练过程? A:使用tensorboard监控训练指标,命令示例:

tensorboard --logdir outputs-ppo-v1/runs --host 0.0.0.0 --port 8009

通过这套完整的训练流程,开发者可以将通用语言模型转化为专业的医疗对话助手,在实际应用中提供更准确、可靠的医疗咨询回答。

MedicalGPT MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training Pipeline. 训练医疗大模型,实现了包括增量预训练、有监督微调、RLHF(奖励建模、强化学习训练)和DPO(直接偏好优化)。 MedicalGPT 项目地址: https://gitcode.com/gh_mirrors/me/MedicalGPT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值