推荐开源项目:Factorizable Net —— 高效场景图生成框架
去发现同类优质开源项目:https://gitcode.com/
项目介绍
Factorizable Net(F-Net)是由 ECCV 2018 论文提出的一种用于高效场景图生成的深度学习框架。该项目基于之前的 Multi-level Scene Description Network (MSDN),提供了一个 PyTorch 实现版本,并包含了模型评估和训练的详细指南,以及预训练模型和数据集。
项目技术分析
F-Net 构建在 Faster R-CNN 基础上,通过一个称为“因子化”的新颖方法,实现了对场景中对象及其关系的有效解析。它采用子图为基础的框架,提高了场景描述的精度与效率。此外,项目支持使用预训练的 RPN 模型,并提供了从头开始训练的选项。
多GPU支持
该项目已更新至 PyTorch 1.0.1,并且引入了多GPU支持(处于测试阶段),允许每个GPU处理一张图像,以提高大规模数据处理时的计算速度。
章节结构清晰
项目组织结构明确,包括数据加载库、NMS 和 ROI 池化等组件,便于理解和扩展。配置文件位于 options
目录下,模型定义则在 models
中,数据集存储于 data
,结果和模型保存在 output
。
应用场景和技术价值
F-Net 可广泛应用于视觉问答、智能交互系统、机器人感知等场景,通过对复杂场景的理解,帮助机器理解并生成人类级别的语义描述。在计算机视觉领域,它为视觉关系检测和场景图生成问题提供了新的解决方案。
项目特点
- 因子化设计:F-Net 提出了一种新的因子化网络结构,能有效地分解复杂的场景图。
- 性能卓越:在 VG-MSDN、VG-DR-Net 和 VG-VRD 数据集上的实验显示,F-Net 在场景图生成任务上取得了优异的性能。
- 易于使用:提供详细的项目设置指导,一键启动评估和训练模式,兼容预训练模型。
- 多GPU支持:在 PyTorch 1.0.1 上实现多GPU训练,加速了大规模数据训练过程。
为了获得更深入的体验,你可以按照提供的说明来安装依赖、下载数据集和预训练模型,然后尝试运行项目中的代码。你的贡献和反馈也将推动这个开源项目不断进步。
参考文献:
@inproceedings{li2018fnet, author={Li, Yikang and Ouyang, Wanli and Bolei, Zhou and Jianping, Shi and Chao, Zhang and Wang, Xiaogang}, title={Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation}, booktitle = {ECCV}, year = {2018} }
如需了解更多信息或提问,请联系作者 Yikang LI。
去发现同类优质开源项目:https://gitcode.com/