EfficientTrain:视觉骨干网络的高效训练方案

EfficientTrain:视觉骨干网络的高效训练方案

EfficientTrain Reducing the training cost of SOTA deep networks (e.g., ConvNeXts, DeiT, PVT, Swin/CSWin, MAE) by >1.5× on ImageNet-1K/22K without sacrificing the accuracy. EfficientTrain 项目地址: https://gitcode.com/gh_mirrors/ef/EfficientTrain

项目介绍

EfficientTrain 是一个旨在提升基础视觉模型训练效率的开箱即用算法,实现无损加速训练或预训练过程。该方法基于泛化的课程学习(Curriculum Learning)策略,设计简洁,易于实施,适用于多种视觉后端模型的优化。由王雨林等研究人员于2023年在国际计算机视觉大会(ICCV)上提出,并进一步发展至2024年的IEEE TPAMI论文中。项目采用PyTorch框架开发,大大简化了高效训练复杂视觉任务的流程。

项目快速启动

要快速启动使用 EfficientTrain,首先确保你的环境中已经安装了Python和PyTorch。接下来,通过以下步骤来集成此项目到你的研究或工程中:

安装

克隆仓库到本地:

git clone https://github.com/LeapLabTHU/EfficientTrain.git

进入项目目录并安装依赖:

cd EfficientTrain
pip install -r requirements.txt

运行示例

以DEiT-S模型为例进行训练,你可以执行以下命令:

python _ET_pp_main_deitS.py

确保你已经配置了正确的数据路径和相关超参数,具体设置可根据项目文档进行调整。

应用案例和最佳实践

EfficientTrain 可广泛应用于图像分类、目标检测、语义分割等多个领域。最佳实践中,重要的是选择适合特定任务的模型变体,并适当调整算法的参数来最大化效率与性能平衡。开发者应参考项目提供的不同模型脚本(如_ET_pp_main_{model_name}.py),并根据实际数据集的特性微调策略。

典型生态项目

尽管EfficientTrain主要关注视觉骨干网络的训练效率,它也促进了与之兼容的生态项目的发展,包括但不限于迁移学习应用、多模态融合以及实时视觉系统。开发者可以将高效的训练策略融入到自己构建的模型库中,例如结合Transformer结构用于更复杂的场景理解任务,或者将其作为预训练技术,加速下游任务的学习进程。


通过遵循上述指导,您可以有效地利用 EfficientTrain 提高您的视觉模型训练效率,无论是学术研究还是工业应用,都能从中获得显著的加速效果与性能改善。

EfficientTrain Reducing the training cost of SOTA deep networks (e.g., ConvNeXts, DeiT, PVT, Swin/CSWin, MAE) by >1.5× on ImageNet-1K/22K without sacrificing the accuracy. EfficientTrain 项目地址: https://gitcode.com/gh_mirrors/ef/EfficientTrain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌芬维Maisie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值