HierSpeech++ 开源项目安装与使用指南
HierSpeech++ 是一个基于 Hierarchical Variational Inference 的高效零样本语音合成器,支持文本到语音(TTS)和语音转换(VC)功能。该项目利用PyTorch实现,并在多个数据集上进行了预训练。
1. 项目目录结构及介绍
HierSpeech++ 的仓库遵循清晰的组织结构,便于开发者快速定位所需文件:
./
根目录:LICENSE
: 许可证文件,说明项目使用的MIT许可证。README.md
: 项目的主要说明文件,包含了项目的简介、论文摘要以及快速入门指导。requirements.txt
: Python依赖库列表,用于环境搭建。- 主要代码文件夹包括:
activations.py
,attentions.py
,commons.py
,modules.py
: 定义了模型中使用的激活函数、注意力机制和其他通用模块。hierspeechpp_speechsynthesizer.py
: HierSpeech++ 核心语音合成器的实现。inference.py
,inference_vc.sh
,inference_speechsr.py
: 分别用于文本转语音、语音转换和语音超分辨率的推理脚本。Mels_preprocess.py
: 预处理音频特征,如梅尔频谱。train_ttv_v1.py
: TTV (Text-to-Vec) 模型的训练脚本。
- 示例与结果(
results
)、数据预处理(preprocess
)、模型训练日志和检查点(logs
)等子目录不在上述基本框架内,但在实际部署和研究时会非常关键。
2. 项目的启动文件介绍
文本转语音(TTS)
主要通过运行inference.py
来执行,需提供预训练模型的路径等参数。示例命令如下:
CUDA_VISIBLE_DEVICES=0 python3 inference.py \
--ckpt "指定的模型路径.pth" \
[--其他可选参数]
语音转换(VC)
使用inference_vc.sh
脚本,同样需要模型路径和相关配置:
CUDA_VISIBLE_DEVICES=0 bash inference_vc.sh \
--ckpt "指定的模型路径.pth" \
[--其他可选参数]
语音超分辨率(Speech Super-resolution)
对于语音质量提升,可通过特定脚本进行,例如:
python3 inference_speechsr.py \
[--output_sr "目标采样率"] \
[--其他必要参数]
3. 项目的配置文件介绍
HierSpeech++的核心配置并不直接以单一配置文件的形式存在,而是通过命令行参数或脚本来灵活设置。模型加载的路径、运行设备的选择(如通过CUDA_VISIBLE_DEVICES
),以及其他重要运行时参数(如噪声尺度、输出目录等)都是通过脚本调用时提供的。虽然没有传统的.config
或.yaml
文件,但这些脚本中的默认参数和命令行选项扮演着配置角色,用户需要根据实际需求调整这些值。
为了更加系统化的管理和自定义复杂配置,开发时可能会考虑引入配置文件来进一步提高可维护性和灵活性,但这在当前版本的项目结构中并未明确提供。
在进行项目操作前,请确保已安装必要的Python库(参考requirements.txt
文件),并遵循具体脚本内的指示进行。由于此项目涉及深度学习和GPU运算,请确保你的环境已经准备就绪,且拥有足够的计算资源。