推荐开源项目:pyHRV - 心率变异性计算的Python工具箱
项目地址:https://gitcode.com/gh_mirrors/py/pyhrv
项目介绍
pyHRV
是一个强大的开源Python库,专为心率变异性(HRV)研究和教育而设计。这个工具箱能够从ECG、SpO2或BVP信号中计算一系列先进的HRV参数,适用于科研和应用开发。它不仅提供了易于理解的源代码,帮助初学者学习HRV的基本原理,还为开发者提供了广泛的HRV分析功能,以及可出版质量的结果图。
项目技术分析
pyHRV
遵循《心率变异性 - 测量标准、生理解释和临床应用指南》进行算法开发与实现。其核心特性包括:
- 时间域参数:提供基础统计参数、SDNN、SDNNindex、SDANN、RMSSD等。
- 频率域参数:通过Welch、Autoregressive和Lomb-Scargle方法计算功率谱密度,并计算各频段的峰值频率、绝对功率、对数功率、相对功率和LF/HF比率。
- 非线性参数:支持Poincaré图分析、样本熵和Detrended Fluctuation Analysis。
- 支持工具:可以计算NNI系列、ΔNNI系列、心率系列,以及绘图工具如ECG绘图、Tachogram、心跳热力图等。
此外,pyHRV
还提供了JSON导出、报告生成和一系列实用函数。
项目及技术应用场景
pyHRV
广泛应用于健康科学领域,例如:
- 研究运动员的训练恢复状况。
- 评估心理健康状态,如压力管理和焦虑水平。
- 老年人健康的监测。
- 慢性疾病患者的心脏健康评估。
项目特点
- 易用性:通过简洁API设计,使用户能快速上手。
- 灵活性:支持多种输入信号类型和多种HRV参数计算方法。
- 开放源码:基于Python,易于扩展和定制。
- 高质量文档:详尽的在线文档和教程,方便学习和查阅。
- 跨平台兼容:主要支持Python 3.x,也兼容Python 2.7。
- 活跃维护:持续更新并修复问题,确保软件的最新性和稳定性。
总之,无论你是生物医学研究人员,还是希望在你的健康应用中集成HRV分析,pyHRV
都是一个值得信赖的工具。立即安装并探索这个强大的库,开启您的HRV分析之旅!
pyhrv Python toolbox for Heart Rate Variability 项目地址: https://gitcode.com/gh_mirrors/py/pyhrv