编程机器学习 - Elixir Livebooks 教程

编程机器学习 - Elixir Livebooks 教程

programming-machine-learning-livebooksProgramming Machine Learning - Elixir Livebooks 项目地址:https://gitcode.com/gh_mirrors/pr/programming-machine-learning-livebooks

项目介绍

programming-machine-learning-livebooks 是一个基于 Elixir 语言的开源项目,旨在通过 Livebook 和 Nx 库来实现机器学习应用。该项目由 NickGnd 开发,主要目的是将 Paolo Perrotta 的书籍《Programming Machine Learning - From Coding to Deep Learning》中的 Python Jupyter 笔记本转换为 Elixir 版本。通过这个项目,用户可以学习如何在 Elixir 中使用机器学习技术,特别是通过 Nx 和 Axon 库来实现深度学习模型。

项目快速启动

环境准备

  1. 安装 Elixir 和 Erlang。
  2. 克隆项目仓库:
    git clone https://github.com/nickgnd/programming-machine-learning-livebooks.git
    

运行 Livebook

  1. 进入项目目录:
    cd programming-machine-learning-livebooks
    
  2. 启动 Livebook:
    livebook server
    
  3. 打开浏览器,访问 http://localhost:8080,即可开始使用 Livebook。

示例代码

以下是一个简单的 Elixir 代码示例,展示如何在 Livebook 中使用 Nx 进行矩阵运算:

Mix.install([
  {:nx, "~> 0.1.0-dev", github: "elixir-nx/nx", branch: "main"}
])

import Nx.Defn

defn add_matrices(a, b) do
  a + b
end

a = Nx.tensor([[1, 2], [3, 4]])
b = Nx.tensor([[5, 6], [7, 8]])

result = add_matrices(a, b)
IO.inspect(result)

应用案例和最佳实践

图像识别应用

该项目中的一个主要应用案例是图像识别。通过使用 Nx 和 Axon 库,用户可以逐步构建一个图像识别应用程序。以下是一个简化的步骤:

  1. 加载图像数据。
  2. 预处理图像数据。
  3. 构建神经网络模型。
  4. 训练模型。
  5. 评估模型性能。

最佳实践

  • 模块化代码:将代码分解为多个模块,便于管理和复用。
  • 使用 Nx 和 Axon:利用 Nx 进行数值计算,Axon 进行神经网络构建。
  • 文档和注释:为代码添加详细的文档和注释,便于理解和维护。

典型生态项目

Nx

Nx 是一个用于数值计算的 Elixir 库,提供了高效的数组操作和数值计算功能。它是该项目中的核心库之一。

Axon

Axon 是一个用于构建和训练神经网络的 Elixir 库。它与 Nx 紧密集成,提供了丰富的神经网络层和训练工具。

Livebook

Livebook 是一个交互式的 Elixir 笔记本环境,类似于 Jupyter Notebook。它允许用户以交互方式编写和运行 Elixir 代码,非常适合机器学习实验和教学。

通过这些生态项目,用户可以构建完整的机器学习工作流程,从数据处理到模型训练和评估。

programming-machine-learning-livebooksProgramming Machine Learning - Elixir Livebooks 项目地址:https://gitcode.com/gh_mirrors/pr/programming-machine-learning-livebooks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢颜娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值