编程机器学习 - Elixir Livebooks 教程
项目介绍
programming-machine-learning-livebooks
是一个基于 Elixir 语言的开源项目,旨在通过 Livebook 和 Nx 库来实现机器学习应用。该项目由 NickGnd 开发,主要目的是将 Paolo Perrotta 的书籍《Programming Machine Learning - From Coding to Deep Learning》中的 Python Jupyter 笔记本转换为 Elixir 版本。通过这个项目,用户可以学习如何在 Elixir 中使用机器学习技术,特别是通过 Nx 和 Axon 库来实现深度学习模型。
项目快速启动
环境准备
- 安装 Elixir 和 Erlang。
- 克隆项目仓库:
git clone https://github.com/nickgnd/programming-machine-learning-livebooks.git
运行 Livebook
- 进入项目目录:
cd programming-machine-learning-livebooks
- 启动 Livebook:
livebook server
- 打开浏览器,访问
http://localhost:8080
,即可开始使用 Livebook。
示例代码
以下是一个简单的 Elixir 代码示例,展示如何在 Livebook 中使用 Nx 进行矩阵运算:
Mix.install([
{:nx, "~> 0.1.0-dev", github: "elixir-nx/nx", branch: "main"}
])
import Nx.Defn
defn add_matrices(a, b) do
a + b
end
a = Nx.tensor([[1, 2], [3, 4]])
b = Nx.tensor([[5, 6], [7, 8]])
result = add_matrices(a, b)
IO.inspect(result)
应用案例和最佳实践
图像识别应用
该项目中的一个主要应用案例是图像识别。通过使用 Nx 和 Axon 库,用户可以逐步构建一个图像识别应用程序。以下是一个简化的步骤:
- 加载图像数据。
- 预处理图像数据。
- 构建神经网络模型。
- 训练模型。
- 评估模型性能。
最佳实践
- 模块化代码:将代码分解为多个模块,便于管理和复用。
- 使用 Nx 和 Axon:利用 Nx 进行数值计算,Axon 进行神经网络构建。
- 文档和注释:为代码添加详细的文档和注释,便于理解和维护。
典型生态项目
Nx
Nx 是一个用于数值计算的 Elixir 库,提供了高效的数组操作和数值计算功能。它是该项目中的核心库之一。
Axon
Axon 是一个用于构建和训练神经网络的 Elixir 库。它与 Nx 紧密集成,提供了丰富的神经网络层和训练工具。
Livebook
Livebook 是一个交互式的 Elixir 笔记本环境,类似于 Jupyter Notebook。它允许用户以交互方式编写和运行 Elixir 代码,非常适合机器学习实验和教学。
通过这些生态项目,用户可以构建完整的机器学习工作流程,从数据处理到模型训练和评估。