开源项目:OpenOps 快速入门与实践指南

开源项目:OpenOps 快速入门与实践指南

openops Open source stack for applying AI to workflows in secure environments 项目地址: https://gitcode.com/gh_mirrors/op/openops


项目介绍

OpenOps 是一个废弃但历史重要的开源平台,它致力于在安全环境中应用生成式人工智能到工作流程中。此项目提供了一个透明且客户可控的环境,支持从OpenAI、Microsoft等知名供应商到Hugging Face等开放源码的LLM(大型语言模型)广泛生态系统,旨在帮助开发者和组织在确保数据控制和安全的前提下探索强大的AI能力。

截至2024年8月23日,这个仓库已被归档并变为只读状态,但保留以供参考。当前,对于最新的Mattermost AI功能,应查看Mattermost Copilot相关仓库。


项目快速启动

环境搭建

首先,您需要克隆OpenOps仓库:

git clone https://github.com/mattermost/openops.git && cd openops

选择您的后端服务(这里展示使用OpenAI作为示例):

env backend=openai
./init.sh

配置OpenAI API凭证:

./configure_openai.sh sk-YOUR_OPENAI_API_KEY

或者,您可以选择配置本地AI模型,先执行初始化,然后下载模型或使用自定义模型:

env backend=localai
./init.sh
./download_model.sh

运行以上命令后,通过提供的终端登录凭据访问Mattermost服务器,开始与您的AI助手交互。

使用Gitpod进行快速开发

点击Gitpod图标或直接运行以下命令来启动预配置的开发环境:

gitpod https://gitpod.io/#https://github.com/mattermost/openops

等待服务启动并获取Mattermost的登录信息,随后即可配置插件并开始使用。


应用案例和最佳实践

案例一:即时响应增强

利用OpenOps,可以创建类似实时聊天的回复体验,即使存在处理延迟,也能维持对话流畅性。

案例二:会议总结自动化

集成Mattermost Calls插件,自动汇总会议要点,提高团队效率。

最佳实践:
  • 在部署前,在安全沙盒中彻底评估不同AI提供商的安全性和隐私策略。
  • 邀请内部信任与安全部门先行测试,收集反馈以迭代优化安全政策。
  • 利用人类反馈循环,持续改进AI助手的响应质量。

典型生态项目

虽然OpenOps本身已不再活跃,但它体现了将AI无缝整合至企业工作流中的概念。在现代环境中,类似的生态项目包括但不限于:

  • Mattermost Copilot: 继承了OpenOps的理念,专注于提供最新的人工智能增强通信解决方案。
  • Azure AI 和 OpenAI Services: 提供强大的云基础AI服务,可与各类自托管或第三方平台集成。
  • Hugging Face: 作为一个开源模型库,提供了丰富的LLM,适合那些寻求更多定制化和灵活性的开发者和组织。

通过这些生态项目,组织可以继续探索在严格控管的数据环境下,AI技术如何被高效、安全地应用。


请注意,具体实施时要遵循最新的软件版本及官方文档,因为这里基于的是归档版本的信息。

openops Open source stack for applying AI to workflows in secure environments 项目地址: https://gitcode.com/gh_mirrors/op/openops

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬筱杉Lewis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值