VL-Adapter:视觉与语言任务的高效迁移学习利器

VL-Adapter:视觉与语言任务的高效迁移学习利器

VL_adapterPyTorch code for "VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks" (CVPR2022)项目地址:https://gitcode.com/gh_mirrors/vl/VL_adapter

项目介绍

VL-Adapter 是一个专为视觉与语言(Vision-and-Language, V&L)任务设计的高效迁移学习框架。该项目由 Yi-Lin SungJaemin ChoMohit Bansal 共同开发,并在 CVPR 2022 上发表了论文 "VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks"。VL-Adapter 通过引入适配器(Adapter)技术,显著减少了模型训练所需的参数数量,同时保持了与全模型微调相当的性能。

项目技术分析

VL-Adapter 的核心技术在于其适配器模块的设计。适配器是一种轻量级的模块,可以在不改变预训练模型主干网络的情况下,通过微调适配器参数来适应不同的下游任务。具体来说,VL-Adapter 在图像-文本和视频-文本任务中,通过共享权重的方式,仅微调总模型参数的 4.18%(图像-文本任务)和 3.39%(视频-文本任务),即可达到与全模型微调相当的性能。

此外,VL-Adapter 还支持多种适配器变体,如单适配器、多适配器、Hyperformer、Compacter、LoRA 和 Prompt 等,用户可以根据具体需求选择合适的适配器类型。

项目及技术应用场景

VL-Adapter 适用于多种视觉与语言任务,包括但不限于:

  • 图像-文本任务:如 VQAv2、GQA、NLVR2 和 MSCOCO 图像描述生成。
  • 视频-文本任务:如 TVQA、How2QA、TVC 和 YC2C。

这些任务通常需要大量的计算资源和时间来进行模型微调,而 VL-Adapter 通过参数高效的方式,显著降低了计算成本,使得在资源有限的情况下也能高效地进行模型训练和部署。

项目特点

  1. 参数高效:通过适配器技术,仅微调极少量的模型参数即可达到与全模型微调相当的性能。
  2. 多任务支持:支持在多个下游任务上进行统一的多任务学习,简化了模型训练流程。
  3. 灵活性高:支持多种适配器变体,用户可以根据具体任务需求选择合适的适配器类型。
  4. 易于使用:项目提供了详细的安装和使用指南,用户可以轻松上手并进行实验。

结语

VL-Adapter 为视觉与语言任务提供了一种高效且灵活的迁移学习解决方案,特别适合资源有限但需要高性能模型的场景。如果你正在寻找一种既能节省计算资源又能保持高性能的模型微调方法,VL-Adapter 无疑是一个值得尝试的选择。

立即访问 VL-Adapter GitHub 仓库,开始你的高效迁移学习之旅吧!

VL_adapterPyTorch code for "VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks" (CVPR2022)项目地址:https://gitcode.com/gh_mirrors/vl/VL_adapter

### DeepSeek-VL 架构特点组成部分 #### 解码器仅有的 LLaVA 风格架构 DeepSeek-VL 展现了一种解码器独有的结构,这种设计借鉴了 LLaVA 的风格,在多模态数据处理方面具有显著优势[^1]。 #### 视觉编码器 作为架构的一部分,视觉编码器负责接收并解析输入图像的信息。此模块能够提取图像中的特征,并将其转化为适合后续处理的形式。对于复杂的视觉任务而言,这一部分的设计至关重要,因为它直接影响到模型理解图片的能力[^3]。 ```python class VisionEncoder(nn.Module): def __init__(self, config): super(VisionEncoder, self).__init__() # 定义卷积层和其他必要的网络组件 def forward(self, images): features = ... # 对输入图像进行特征抽取操作 return features ``` #### 视觉语言适配器 为了使来自不同源的数据可以有效地交互协作,视觉语言适配器起到了桥梁的作用。这个组件不仅连接着视觉编码器产生的表示形式,还促进了它们同文本信息之间的交流融合。通过这种方式,即使是在异质性的环境下也能实现高效沟通。 ```python class VLAAdapter(nn.Module): def __init__(self, vision_dim, text_dim): super(VLAAdapter, self).__init__() self.adapter_layer = nn.Linear(vision_dim, text_dim) def forward(self, visual_features): adapted_output = self.adapter_layer(visual_features) return adapted_output ``` #### 专家混合语言模型 最后,专家混合语言模型构成了整个系统的决策中心。这里采用了多个专门针对特定领域训练过的子模型组合而成的方式,从而提高了应对多样化查询请求时的表现力。当接收到新的输入后,系统会自动选择最合适的一个或几个专家来进行响应生成工作。 ```python from transformers import AutoModelForCausalLM class MoEExpertSystem: def __init__(self, experts_paths): self.experts = [AutoModelForCausalLM.from_pretrained(path) for path in experts_paths] def select_expert_and_generate(self, input_ids, attention_mask=None): selected_expert_index = ... # 根据某些标准挑选最合适的专家 output = self.experts[selected_expert_index].generate(input_ids=input_ids, attention_mask=attention_mask) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬筱杉Lewis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值